Nuprl Lemma : superlevelset_wf
∀[I:Interval]. ∀[f:I ⟶ℝ]. ∀[c:ℝ].  (superlevelset(I;f;c) ∈ ℝ ⟶ ℙ)
Proof
Definitions occuring in Statement : 
superlevelset: superlevelset(I;f;c)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
superlevelset: superlevelset(I;f;c)
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
i-member_wf, 
rleq_wf, 
r-ap_wf, 
real_wf, 
rfun_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[c:\mBbbR{}].    (superlevelset(I;f;c)  \mmember{}  \mBbbR{}  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_51_18
Last ObjectModification:
2015_12_27-PM-11_43_01
Theory : reals
Home
Index