Nuprl Lemma : i-closed-closed

I:Interval. (i-closed(I)  closed-rset(λx.(x ∈ I)))


Proof




Definitions occuring in Statement :  i-member: r ∈ I i-closed: i-closed(I) interval: Interval closed-rset: closed-rset(A) all: x:A. B[x] implies:  Q lambda: λx.A[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q closed-rset: closed-rset(A) member-closure: y ∈ closure(A) exists: x:A. B[x] and: P ∧ Q interval: Interval i-member: r ∈ I i-closed: i-closed(I) isl: isl(x) outl: outl(x) bnot: ¬bb ifthenelse: if then else fi  btrue: tt bor: p ∨bq bfalse: ff assert: b cand: c∧ B uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q false: False real: prop: true: True guard: {T}
Lemmas referenced :  rleq-limit nat_wf constant-limit req_weakening regular-int-seq_wf member-closure_wf i-member_wf real_wf i-closed_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule sqequalHypSubstitution productElimination thin unionElimination cut rename lemma_by_obid isectElimination lambdaEquality hypothesisEquality hypothesis because_Cache independent_isectElimination dependent_functionElimination independent_functionElimination independent_pairFormation voidElimination setElimination dependent_set_memberEquality natural_numberEquality

Latex:
\mforall{}I:Interval.  (i-closed(I)  {}\mRightarrow{}  closed-rset(\mlambda{}x.(x  \mmember{}  I)))



Date html generated: 2016_05_18-AM-09_20_56
Last ObjectModification: 2015_12_27-PM-11_23_23

Theory : reals


Home Index