Nuprl Lemma : i-closed-closed
∀I:Interval. (i-closed(I) 
⇒ closed-rset(λx.(x ∈ I)))
Proof
Definitions occuring in Statement : 
i-member: r ∈ I
, 
i-closed: i-closed(I)
, 
interval: Interval
, 
closed-rset: closed-rset(A)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
closed-rset: closed-rset(A)
, 
member-closure: y ∈ closure(A)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
interval: Interval
, 
i-member: r ∈ I
, 
i-closed: i-closed(I)
, 
isl: isl(x)
, 
outl: outl(x)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bor: p ∨bq
, 
bfalse: ff
, 
assert: ↑b
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
real: ℝ
, 
prop: ℙ
, 
true: True
, 
guard: {T}
Lemmas referenced : 
rleq-limit, 
nat_wf, 
constant-limit, 
req_weakening, 
regular-int-seq_wf, 
member-closure_wf, 
i-member_wf, 
real_wf, 
i-closed_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
cut, 
rename, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
voidElimination, 
setElimination, 
dependent_set_memberEquality, 
natural_numberEquality
Latex:
\mforall{}I:Interval.  (i-closed(I)  {}\mRightarrow{}  closed-rset(\mlambda{}x.(x  \mmember{}  I)))
Date html generated:
2016_05_18-AM-09_20_56
Last ObjectModification:
2015_12_27-PM-11_23_23
Theory : reals
Home
Index