Nuprl Lemma : i-closed_wf

[I:Interval]. (i-closed(I) ∈ ℙ)


Proof




Definitions occuring in Statement :  i-closed: i-closed(I) interval: Interval uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T interval: Interval i-closed: i-closed(I) isl: isl(x) outl: outl(x) bnot: ¬bb ifthenelse: if then else fi  btrue: tt bor: p ∨bq bfalse: ff assert: b
Lemmas referenced :  and_wf assert_wf isl_wf real_wf true_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin unionElimination sqequalRule lemma_by_obid isectElimination hypothesis hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  (i-closed(I)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_18_47
Last ObjectModification: 2015_12_27-PM-11_57_30

Theory : reals


Home Index