Step
*
1
1
1
1
2
of Lemma
totally-bounded-bounded-above
1. [A] : Set(ℝ)
2. ∀e:ℝ. ((r0 < e)
⇒ (∃n:ℕ+. ∃a:ℕn ⟶ ℝ. ((∀i:ℕn. (a i ∈ A)) ∧ (∀x:ℝ. ((x ∈ A)
⇒ (∃i:ℕn. (|x - a i| < e)))))))
3. n : ℕ+
4. a : ℕn ⟶ ℝ
5. ∀i:ℕn. (a i ∈ A)
6. ∀x:ℝ. ((x ∈ A)
⇒ (∃i:ℕn. (|x - a i| < r1)))
7. x : ℝ
8. x ∈ A
9. i : ℕn
10. |x - a i| < r1
11. ((x - a i) ≤ |x - a i|) ∧ ((x - a i) < r1)
⊢ x < ((a i) + r1)
BY
{ (D (-1) THEN nRAdd ⌜a i⌝ (-1)⋅ THEN Auto) }
Latex:
Latex:
1. [A] : Set(\mBbbR{})
2. \mforall{}e:\mBbbR{}
((r0 < e)
{}\mRightarrow{} (\mexists{}n:\mBbbN{}\msupplus{}. \mexists{}a:\mBbbN{}n {}\mrightarrow{} \mBbbR{}. ((\mforall{}i:\mBbbN{}n. (a i \mmember{} A)) \mwedge{} (\mforall{}x:\mBbbR{}. ((x \mmember{} A) {}\mRightarrow{} (\mexists{}i:\mBbbN{}n. (|x - a i| < e)))))))
3. n : \mBbbN{}\msupplus{}
4. a : \mBbbN{}n {}\mrightarrow{} \mBbbR{}
5. \mforall{}i:\mBbbN{}n. (a i \mmember{} A)
6. \mforall{}x:\mBbbR{}. ((x \mmember{} A) {}\mRightarrow{} (\mexists{}i:\mBbbN{}n. (|x - a i| < r1)))
7. x : \mBbbR{}
8. x \mmember{} A
9. i : \mBbbN{}n
10. |x - a i| < r1
11. ((x - a i) \mleq{} |x - a i|) \mwedge{} ((x - a i) < r1)
\mvdash{} x < ((a i) + r1)
By
Latex:
(D (-1) THEN nRAdd \mkleeneopen{}a i\mkleeneclose{} (-1)\mcdot{} THEN Auto)
Home
Index