Step * 2 1 2 1 1 1 2 of Lemma triangular-reciprocal-series-sum


1. lim n→∞.r(2) (r(2)/r(n 2)) r(2)
2. ∀i:ℕ(1 ≤ t(i 1))
3. ∀i:ℕ(t(i 1) 0 ∈ ℤ))
4. : ℕ
5. Σ{(r1/r(t(k 1))) 0≤k≤n} = Σ{(r(2)/r(k 1)) (r(-2)/r(k 2)) 0≤k≤n}
⊢ r(2) (r(2)/r(0 1))
BY
(nRNorm THEN nRMul ⌜r1⌝ 0⋅ THEN Auto) }


Latex:


Latex:

1.  lim  n\mrightarrow{}\minfty{}.r(2)  -  (r(2)/r(n  +  2))  =  r(2)
2.  \mforall{}i:\mBbbN{}.  (1  \mleq{}  t(i  +  1))
3.  \mforall{}i:\mBbbN{}.  (\mneg{}(t(i  +  1)  =  0))
4.  n  :  \mBbbN{}
5.  \mSigma{}\{(r1/r(t(k  +  1)))  |  0\mleq{}k\mleq{}n\}  =  \mSigma{}\{(r(2)/r(k  +  1))  +  (r(-2)/r(k  +  2))  |  0\mleq{}k\mleq{}n\}
\mvdash{}  r(2)  =  (r(2)/r(0  +  1))


By


Latex:
(nRNorm  0  THEN  nRMul  \mkleeneopen{}r1\mkleeneclose{}  0\mcdot{}  THEN  Auto)




Home Index