Nuprl Lemma : triangular-reciprocal-series-sum
Σn.(r1/r(t(n + 1))) = r(2)
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a
, 
rdiv: (x/y)
, 
int-to-real: r(n)
, 
triangular-num: t(n)
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
converges-to: lim n→∞.x[n] = y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
rdiv: (x/y)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
rev_uimplies: rev_uimplies(P;Q)
, 
triangular-num: t(n)
, 
divide: n ÷ m
, 
series-sum: Σn.x[n] = a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
rsub: x - y
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermAdd: left "+" right
, 
rat_term_ind: rat_term_ind, 
rtermConstant: "const"
, 
rtermDivide: num "/" denom
, 
rtermVar: rtermVar(var)
, 
pi1: fst(t)
, 
rtermMinus: rtermMinus(num)
, 
pi2: snd(t)
Lemmas referenced : 
rsub-limit, 
int-to-real_wf, 
nat_wf, 
rdiv_wf, 
rless-int, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
rless_wf, 
constant-limit, 
req_weakening, 
nat_plus_wf, 
nat_plus_properties, 
decidable__le, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
le_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rmul_wf, 
rinv_wf2, 
rleq-int-fractions2, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
rleq-int-fractions, 
uiff_transitivity, 
rleq_functionality, 
rabs_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rinv-as-rdiv, 
rabs-of-nonneg, 
subtract_wf, 
converges-to_functionality, 
rsub-int, 
triangular-num-le, 
full-omega-unsat, 
istype-int, 
istype-void, 
istype-le, 
istype-nat, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
rsum_wf, 
triangular-num_wf, 
int_seg_properties, 
rneq-int, 
lelt_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
istype-false, 
rsum_functionality, 
radd_wf, 
istype-less_than, 
mul_bounds_1b, 
req_functionality, 
radd-int-fractions, 
mul_nzero, 
nequal_wf, 
req-int-fractions, 
decidable__equal_int, 
iff_weakening_equal, 
subtype_rel_self, 
twice-triangular, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
mul-distributes, 
mul-distributes-right, 
mul-associates, 
mul-commutes, 
one-mul, 
add-swap, 
add-mul-special, 
zero-mul, 
req_transitivity, 
rsum_linearity1, 
subtract-add-cancel, 
radd_functionality, 
rsum-split-first, 
rsum-split-last, 
radd_assoc, 
rminus_wf, 
req_inversion, 
rsum-shift, 
radd-rdiv, 
rdiv_functionality, 
radd-int, 
real_polynomial_null, 
rsum-zero, 
assert-rat-term-eq2, 
rtermMinus_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermVar_wf, 
rtermAdd_wf, 
rmul_preserves_req, 
rmul-int, 
rmul_functionality, 
rinv1
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
addEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
inrFormation, 
productElimination, 
independent_functionElimination, 
hypothesisEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
lambdaFormation, 
dependent_set_memberFormation, 
dependent_set_memberEquality, 
multiplyEquality, 
functionEquality, 
applyEquality, 
minusEquality, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
inrFormation_alt, 
imageElimination, 
inhabitedIsType, 
imageMemberEquality, 
universeEquality, 
instantiate
Latex:
\mSigma{}n.(r1/r(t(n  +  1)))  =  r(2)
Date html generated:
2019_10_29-AM-10_25_26
Last ObjectModification:
2019_04_02-AM-10_01_11
Theory : reals
Home
Index