Nuprl Lemma : triangular-reciprocal-series-sum

Σn.(r1/r(t(n 1))) r(2)


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a rdiv: (x/y) int-to-real: r(n) triangular-num: t(n) add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] nat: uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: converges-to: lim n→∞.x[n] y sq_exists: x:A [B[x]] nat_plus: + le: A ≤ B uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) triangular-num: t(n) divide: n ÷ m series-sum: Σn.x[n] a int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T pointwise-req: x[k] y[k] for k ∈ [n,m] nequal: a ≠ b ∈  int_nzero: -o rsub: y rat_term_to_real: rat_term_to_real(f;t) rtermAdd: left "+" right rat_term_ind: rat_term_ind rtermConstant: "const" rtermDivide: num "/" denom rtermVar: rtermVar(var) pi1: fst(t) rtermMinus: rtermMinus(num) pi2: snd(t)
Lemmas referenced :  rsub-limit int-to-real_wf nat_wf rdiv_wf rless-int nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf rless_wf constant-limit req_weakening nat_plus_wf nat_plus_properties decidable__le itermMultiply_wf int_term_value_mul_lemma le_wf all_wf rleq_wf rabs_wf rsub_wf rmul_wf rinv_wf2 rleq-int-fractions2 false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf rleq-int-fractions uiff_transitivity rleq_functionality rabs_functionality real_term_polynomial itermSubtract_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rinv-as-rdiv rabs-of-nonneg subtract_wf converges-to_functionality rsub-int triangular-num-le full-omega-unsat istype-int istype-void istype-le istype-nat intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base rsum_wf triangular-num_wf int_seg_properties rneq-int lelt_wf int_seg_wf int_seg_subtype_nat istype-false rsum_functionality radd_wf istype-less_than mul_bounds_1b req_functionality radd-int-fractions mul_nzero nequal_wf req-int-fractions decidable__equal_int iff_weakening_equal subtype_rel_self twice-triangular istype-universe true_wf squash_wf equal_wf mul-distributes mul-distributes-right mul-associates mul-commutes one-mul add-swap add-mul-special zero-mul req_transitivity rsum_linearity1 subtract-add-cancel radd_functionality rsum-split-first rsum-split-last radd_assoc rminus_wf req_inversion rsum-shift radd-rdiv rdiv_functionality radd-int real_polynomial_null rsum-zero assert-rat-term-eq2 rtermMinus_wf rtermDivide_wf rtermConstant_wf rtermVar_wf rtermAdd_wf rmul_preserves_req rmul-int rmul_functionality rinv1
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin sqequalRule lambdaEquality isectElimination natural_numberEquality hypothesis addEquality setElimination rename because_Cache independent_isectElimination inrFormation productElimination independent_functionElimination hypothesisEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll lambdaFormation dependent_set_memberFormation dependent_set_memberEquality multiplyEquality functionEquality applyEquality minusEquality lambdaFormation_alt dependent_set_memberEquality_alt approximateComputation dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt universeIsType equalityTransitivity equalitySymmetry equalityIstype baseApply closedConclusion baseClosed sqequalBase inrFormation_alt imageElimination inhabitedIsType imageMemberEquality universeEquality instantiate

Latex:
\mSigma{}n.(r1/r(t(n  +  1)))  =  r(2)



Date html generated: 2019_10_29-AM-10_25_26
Last ObjectModification: 2019_04_02-AM-10_01_11

Theory : reals


Home Index