Nuprl Lemma : triangular-num-le

[n,m:ℕ].  t(n) ≤ t(m) supposing n ≤ m


Proof




Definitions occuring in Statement :  triangular-num: t(n) nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: nat: all: x:A. B[x] ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} squash: T true: True iff: ⇐⇒ Q rev_implies:  Q subtract: m
Lemmas referenced :  less_than'_wf triangular-num_wf le_wf nat_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma subtype_base_sq int_subtype_base and_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma squash_wf true_wf triangular-num-add1 iff_weakening_equal minus-one-mul add-swap add-mul-special zero-mul add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry setElimination rename isect_memberEquality voidElimination lambdaFormation intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidEquality independent_pairFormation computeAll independent_functionElimination dependent_set_memberEquality unionElimination instantiate cumulativity setEquality hyp_replacement applyLambdaEquality addEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[n,m:\mBbbN{}].    t(n)  \mleq{}  t(m)  supposing  n  \mleq{}  m



Date html generated: 2019_06_20-PM-02_38_12
Last ObjectModification: 2019_06_12-PM-00_26_39

Theory : num_thy_1


Home Index