Step
*
1
1
of Lemma
uniform-partition-refines
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. k : ℕ+
4. m : ℕ+
5. icompact([a, b])
6. i : ℕk - 1
7. 1 ≤ m
8. ((i + 1) * 1) ≤ ((i + 1) * m)
9. i + 1 < k
10. m * (i + 1) < m * k
⊢ (((r(k) - r(i + 1)) * a) + (r(i + 1) * b)/r(k))
= (((r(m * k) - r(((m * (i + 1)) - 1) + 1)) * a) + (r(((m * (i + 1)) - 1) + 1) * b)/r(m * k))
BY
{ ((Assert r0 < (r(m) * r(k)) BY
(BLemma `rmul-is-positive` THEN EAuto 1))
THEN (Subst' ((m * (i + 1)) - 1) + 1 ~ m * (i + 1) 0 THENA Auto)
THEN (RWO "rmul-int<" 0 THENA Auto)
THEN nRMul ⌜r(m) * r(k)⌝ 0⋅
THEN Auto) }
Latex:
Latex:
1. a : \mBbbR{}
2. b : \{b:\mBbbR{}| a \mleq{} b\}
3. k : \mBbbN{}\msupplus{}
4. m : \mBbbN{}\msupplus{}
5. icompact([a, b])
6. i : \mBbbN{}k - 1
7. 1 \mleq{} m
8. ((i + 1) * 1) \mleq{} ((i + 1) * m)
9. i + 1 < k
10. m * (i + 1) < m * k
\mvdash{} (((r(k) - r(i + 1)) * a) + (r(i + 1) * b)/r(k))
= (((r(m * k) - r(((m * (i + 1)) - 1) + 1)) * a) + (r(((m * (i + 1)) - 1) + 1) * b)/r(m * k))
By
Latex:
((Assert r0 < (r(m) * r(k)) BY
(BLemma `rmul-is-positive` THEN EAuto 1))
THEN (Subst' ((m * (i + 1)) - 1) + 1 \msim{} m * (i + 1) 0 THENA Auto)
THEN (RWO "rmul-int<" 0 THENA Auto)
THEN nRMul \mkleeneopen{}r(m) * r(k)\mkleeneclose{} 0\mcdot{}
THEN Auto)
Home
Index