Step
*
1
1
1
of Lemma
Riemann-integral-const
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. c : ℝ
4. ∀f:{f:[a, b] ⟶ℝ| ifun(f;[a, b])} . lim k→∞.Riemann-sum(λx.f[x];a;b;k + 1) = ∫ f[x] dx on [a, b]
5. ∀[y1,y2:ℝ].
(y1 = y2) supposing (lim n→∞.Riemann-sum(λx.c;a;b;n + 1) = y2 and lim n→∞.Riemann-sum(λx.c;a;b;n + 1) = y1)
⊢ lim n→∞.Riemann-sum(λx.c;a;b;n + 1) = c * (b - a)
BY
{ ((InstLemma `converges-to_functionality` [⌜λ2n.c * (b - a)⌝;⌜λ2n.Riemann-sum(λx.c;a;b;n + 1)⌝;⌜c * (b - a)⌝;⌜c
* (b
- a)⌝]⋅
THENA Auto
)
THENM Try (BHyp -1 )
) }
1
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. c : ℝ
4. ∀f:{f:[a, b] ⟶ℝ| ifun(f;[a, b])} . lim k→∞.Riemann-sum(λx.f[x];a;b;k + 1) = ∫ f[x] dx on [a, b]
5. ∀[y1,y2:ℝ].
(y1 = y2) supposing (lim n→∞.Riemann-sum(λx.c;a;b;n + 1) = y2 and lim n→∞.Riemann-sum(λx.c;a;b;n + 1) = y1)
6. n : ℕ
⊢ (c * (b - a)) = Riemann-sum(λx.c;a;b;n + 1)
2
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. c : ℝ
4. ∀f:{f:[a, b] ⟶ℝ| ifun(f;[a, b])} . lim k→∞.Riemann-sum(λx.f[x];a;b;k + 1) = ∫ f[x] dx on [a, b]
5. ∀[y1,y2:ℝ].
(y1 = y2) supposing (lim n→∞.Riemann-sum(λx.c;a;b;n + 1) = y2 and lim n→∞.Riemann-sum(λx.c;a;b;n + 1) = y1)
6. lim n→∞.c * (b - a) = c * (b - a)
⇒ lim n→∞.Riemann-sum(λx.c;a;b;n + 1) = c * (b - a)
⊢ lim n→∞.c * (b - a) = c * (b - a)
Latex:
Latex:
1. a : \mBbbR{}
2. b : \{b:\mBbbR{}| a \mleq{} b\}
3. c : \mBbbR{}
4. \mforall{}f:\{f:[a, b] {}\mrightarrow{}\mBbbR{}| ifun(f;[a, b])\} . lim k\mrightarrow{}\minfty{}.Riemann-sum(\mlambda{}x.f[x];a;b;k + 1) = \mint{} f[x] dx on [a, b]
5. \mforall{}[y1,y2:\mBbbR{}].
(y1 = y2) supposing
(lim n\mrightarrow{}\minfty{}.Riemann-sum(\mlambda{}x.c;a;b;n + 1) = y2 and
lim n\mrightarrow{}\minfty{}.Riemann-sum(\mlambda{}x.c;a;b;n + 1) = y1)
\mvdash{} lim n\mrightarrow{}\minfty{}.Riemann-sum(\mlambda{}x.c;a;b;n + 1) = c * (b - a)
By
Latex:
((InstLemma `converges-to\_functionality` [\mkleeneopen{}\mlambda{}\msubtwo{}n.c * (b - a)\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n.Riemann-sum(\mlambda{}x.c;a;b;n + 1)\mkleeneclose{};
\mkleeneopen{}c * (b - a)\mkleeneclose{};\mkleeneopen{}c * (b - a)\mkleeneclose{}]\mcdot{}
THENA Auto
)
THENM Try (BHyp -1 )
)
Home
Index