Nuprl Lemma : Riemann-integral-const
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[c:ℝ].  (∫ c dx on [a, b] = (c * (b - a)))
Proof
Definitions occuring in Statement : 
Riemann-integral: ∫ f[x] dx on [a, b], 
rleq: x ≤ y, 
rsub: x - y, 
req: x = y, 
rmul: a * b, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
subtype_rel: A ⊆r B, 
rfun: I ⟶ℝ, 
all: ∀x:A. B[x], 
top: Top, 
so_apply: x[s], 
and: P ∧ Q, 
prop: ℙ, 
uimplies: b supposing a, 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
nat_plus: ℕ+, 
nat: ℕ, 
le: A ≤ B, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
uiff: uiff(P;Q), 
subtract: n - m, 
less_than': less_than'(a;b), 
true: True, 
guard: {T}, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
Riemann-integral_wf, 
top_wf, 
member_rccint_lemma, 
subtype_rel_dep_function, 
real_wf, 
rleq_wf, 
subtype_rel_self, 
set_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
req_weakening, 
req_wf, 
i-member_wf, 
rccint_wf, 
ifun_wf, 
rccint-icompact, 
rmul_wf, 
rsub_wf, 
Riemann-sums-converge-to, 
unique-limit, 
Riemann-sum_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
nat_wf, 
converges-to_functionality, 
req_functionality, 
Riemann-sum-constant, 
constant-limit
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setEquality, 
productEquality, 
independent_isectElimination, 
lambdaFormation, 
productElimination, 
independent_functionElimination, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
intEquality, 
minusEquality
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[c:\mBbbR{}].    (\mint{}  c  dx  on  [a,  b]  =  (c  *  (b  -  a)))
Date html generated:
2016_10_26-PM-00_02_54
Last ObjectModification:
2016_09_12-PM-05_38_05
Theory : reals_2
Home
Index