Nuprl Lemma : Riemann-integral_wf
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f:{f:[a, b] ⟶ℝ| ifun(f;[a, b])} ]. (∫ f[x] dx on [a, b] ∈ ℝ)
Proof
Definitions occuring in Statement :
Riemann-integral: ∫ f[x] dx on [a, b]
,
ifun: ifun(f;I)
,
rfun: I ⟶ℝ
,
rccint: [l, u]
,
rleq: x ≤ y
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
set: {x:A| B[x]}
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
Riemann-integral: ∫ f[x] dx on [a, b]
,
squash: ↓T
,
uimplies: b supposing a
,
label: ...$L... t
,
rfun: I ⟶ℝ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
guard: {T}
,
rev_implies: P
⇐ Q
,
prop: ℙ
,
converges: x[n]↓ as n→∞
,
exists: ∃x:A. B[x]
,
top: Top
,
so_lambda: λ2x.t[x]
,
nat_plus: ℕ+
,
nat: ℕ
,
le: A ≤ B
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
false: False
,
uiff: uiff(P;Q)
,
subtract: n - m
,
less_than': less_than'(a;b)
,
true: True
,
sq_stable: SqStable(P)
Lemmas referenced :
pi1_wf_top,
ifun_wf,
eta_conv,
real_wf,
rccint-icompact,
iff_weakening_equal,
i-member_wf,
rccint_wf,
exists_wf,
converges-to_wf,
Riemann-sum_wf,
decidable__lt,
false_wf,
not-lt-2,
condition-implies-le,
minus-add,
minus-one-mul,
zero-add,
minus-one-mul-top,
add-commutes,
add_functionality_wrt_le,
add-associates,
add-zero,
le-add-cancel,
less_than_wf,
nat_wf,
set_wf,
rfun_wf,
sq_stable__rleq,
rleq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
setElimination,
thin,
rename,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
because_Cache,
applyEquality,
lambdaEquality,
imageElimination,
independent_isectElimination,
hypothesis,
dependent_functionElimination,
hypothesisEquality,
productElimination,
independent_functionElimination,
imageMemberEquality,
baseClosed,
equalityTransitivity,
equalitySymmetry,
dependent_set_memberEquality,
setEquality,
independent_pairEquality,
isect_memberEquality,
voidElimination,
voidEquality,
addEquality,
natural_numberEquality,
unionElimination,
independent_pairFormation,
lambdaFormation,
minusEquality,
axiomEquality
Latex:
\mforall{}[a:\mBbbR{}]. \mforall{}[b:\{b:\mBbbR{}| a \mleq{} b\} ]. \mforall{}[f:\{f:[a, b] {}\mrightarrow{}\mBbbR{}| ifun(f;[a, b])\} ]. (\mint{} f[x] dx on [a, b] \mmember{} \mBbbR{})
Date html generated:
2016_10_26-PM-00_02_04
Last ObjectModification:
2016_09_12-PM-05_37_47
Theory : reals_2
Home
Index