Step * 1 1 2 2 1 2 1 of Lemma arctangent-reduction


1. {B:ℝr0 < B} 
2. {x:ℝ(r(-1)/B) < x} 
3. ∀x:{x:ℝ(r(-1)/B) < x} (r0 < (r1 (x B)))
4. ∀x:ℝ(r0 < (r1 x^2))
5. d(arctangent(x))/dx = λx.(r1/r1 x^2) on (-∞, ∞)
6. ∀x1:{x:ℝx ∈ ((r(-1)/B), ∞)} (r0 < r1 (x1 B)^2)
7. d(arctangent((x B/r1 (x B))))/dx = λx.((r1 (B B)/r1 (x B)^2)/r1
(x B/r1 (x B))^2) on ((r(-1)/B), ∞)
8. x1 {x:ℝx ∈ ((r(-1)/B), ∞)} 
9. ∀x1:{x:ℝx ∈ ((r(-1)/B), ∞)} 
     ((r0 < (r1 (x1 B))) ∧ (r0 < ((r1 (x1 B)) (r1 (x1 B)))) ∧ (r0 < r1 (x1 B)^2))
⊢ ((r1 (B B)/r1 (x1 B)^2)/r1 (x1 B/r1 (x1 B))^2) (r1/r1 x1^2)
BY
((Assert r0 < (r1 (x1 B)) BY Auto) THEN MoveToConcl (-1) THEN (GenConclTerm ⌜r1 (x1 B)⌝⋅ THENA Auto)) }

1
1. {B:ℝr0 < B} 
2. {x:ℝ(r(-1)/B) < x} 
3. ∀x:{x:ℝ(r(-1)/B) < x} (r0 < (r1 (x B)))
4. ∀x:ℝ(r0 < (r1 x^2))
5. d(arctangent(x))/dx = λx.(r1/r1 x^2) on (-∞, ∞)
6. ∀x1:{x:ℝx ∈ ((r(-1)/B), ∞)} (r0 < r1 (x1 B)^2)
7. d(arctangent((x B/r1 (x B))))/dx = λx.((r1 (B B)/r1 (x B)^2)/r1
(x B/r1 (x B))^2) on ((r(-1)/B), ∞)
8. x1 {x:ℝx ∈ ((r(-1)/B), ∞)} 
9. ∀x1:{x:ℝx ∈ ((r(-1)/B), ∞)} 
     ((r0 < (r1 (x1 B))) ∧ (r0 < ((r1 (x1 B)) (r1 (x1 B)))) ∧ (r0 < r1 (x1 B)^2))
10. : ℝ
11. (r1 (x1 B)) v ∈ ℝ
⊢ (r0 < v)  (((r1 (B B)/v^2)/r1 (x1 B/v)^2) (r1/r1 x1^2))


Latex:


Latex:

1.  B  :  \{B:\mBbbR{}|  r0  <  B\} 
2.  x  :  \{x:\mBbbR{}|  (r(-1)/B)  <  x\} 
3.  \mforall{}x:\{x:\mBbbR{}|  (r(-1)/B)  <  x\}  .  (r0  <  (r1  +  (x  *  B)))
4.  \mforall{}x:\mBbbR{}.  (r0  <  (r1  +  x\^{}2))
5.  d(arctangent(x))/dx  =  \mlambda{}x.(r1/r1  +  x\^{}2)  on  (-\minfty{},  \minfty{})
6.  \mforall{}x1:\{x:\mBbbR{}|  x  \mmember{}  ((r(-1)/B),  \minfty{})\}  .  (r0  <  r1  +  (x1  *  B)\^{}2)
7.  d(arctangent((x  -  B/r1  +  (x  *  B))))/dx  =  \mlambda{}x.((r1  +  (B  *  B)/r1  +  (x  *  B)\^{}2)/r1
+  (x  -  B/r1  +  (x  *  B))\^{}2)  on  ((r(-1)/B),  \minfty{})
8.  x1  :  \{x:\mBbbR{}|  x  \mmember{}  ((r(-1)/B),  \minfty{})\} 
9.  \mforall{}x1:\{x:\mBbbR{}|  x  \mmember{}  ((r(-1)/B),  \minfty{})\} 
          ((r0  <  (r1  +  (x1  *  B)))  \mwedge{}  (r0  <  ((r1  +  (x1  *  B))  *  (r1  +  (x1  *  B))))  \mwedge{}  (r0  <  r1  +  (x1  *  B)\^{}2))
\mvdash{}  ((r1  +  (B  *  B)/r1  +  (x1  *  B)\^{}2)/r1  +  (x1  -  B/r1  +  (x1  *  B))\^{}2)  =  (r1/r1  +  x1\^{}2)


By


Latex:
((Assert  r0  <  (r1  +  (x1  *  B))  BY
                Auto)
  THEN  MoveToConcl  (-1)
  THEN  (GenConclTerm  \mkleeneopen{}r1  +  (x1  *  B)\mkleeneclose{}\mcdot{}  THENA  Auto))




Home Index