Step * 1 1 2 2 1 2 1 1 of Lemma arctangent-reduction


1. {B:ℝr0 < B} 
2. {x:ℝ(r(-1)/B) < x} 
3. ∀x:{x:ℝ(r(-1)/B) < x} (r0 < (r1 (x B)))
4. ∀x:ℝ(r0 < (r1 x^2))
5. d(arctangent(x))/dx = λx.(r1/r1 x^2) on (-∞, ∞)
6. ∀x1:{x:ℝx ∈ ((r(-1)/B), ∞)} (r0 < r1 (x1 B)^2)
7. d(arctangent((x B/r1 (x B))))/dx = λx.((r1 (B B)/r1 (x B)^2)/r1
(x B/r1 (x B))^2) on ((r(-1)/B), ∞)
8. x1 {x:ℝx ∈ ((r(-1)/B), ∞)} 
9. ∀x1:{x:ℝx ∈ ((r(-1)/B), ∞)} 
     ((r0 < (r1 (x1 B))) ∧ (r0 < ((r1 (x1 B)) (r1 (x1 B)))) ∧ (r0 < r1 (x1 B)^2))
10. : ℝ
11. (r1 (x1 B)) v ∈ ℝ
⊢ (r0 < v)  (((r1 (B B)/v^2)/r1 (x1 B/v)^2) (r1/r1 x1^2))
BY
((D THENA Auto)
   THEN (Assert r0 ≤ (x1 B/v)^2 BY
               (GenConcl ⌜(x1 B/v) a ∈ ℝ⌝⋅ THEN Auto))
   THEN (Assert r0 < (r1 (x1 B/v)^2) BY
               (RWO "-1<THEN Auto))) }

1
1. {B:ℝr0 < B} 
2. {x:ℝ(r(-1)/B) < x} 
3. ∀x:{x:ℝ(r(-1)/B) < x} (r0 < (r1 (x B)))
4. ∀x:ℝ(r0 < (r1 x^2))
5. d(arctangent(x))/dx = λx.(r1/r1 x^2) on (-∞, ∞)
6. ∀x1:{x:ℝx ∈ ((r(-1)/B), ∞)} (r0 < r1 (x1 B)^2)
7. d(arctangent((x B/r1 (x B))))/dx = λx.((r1 (B B)/r1 (x B)^2)/r1
(x B/r1 (x B))^2) on ((r(-1)/B), ∞)
8. x1 {x:ℝx ∈ ((r(-1)/B), ∞)} 
9. ∀x1:{x:ℝx ∈ ((r(-1)/B), ∞)} 
     ((r0 < (r1 (x1 B))) ∧ (r0 < ((r1 (x1 B)) (r1 (x1 B)))) ∧ (r0 < r1 (x1 B)^2))
10. : ℝ
11. (r1 (x1 B)) v ∈ ℝ
12. r0 < v
13. r0 ≤ (x1 B/v)^2
14. r0 < (r1 (x1 B/v)^2)
⊢ ((r1 (B B)/v^2)/r1 (x1 B/v)^2) (r1/r1 x1^2)


Latex:


Latex:

1.  B  :  \{B:\mBbbR{}|  r0  <  B\} 
2.  x  :  \{x:\mBbbR{}|  (r(-1)/B)  <  x\} 
3.  \mforall{}x:\{x:\mBbbR{}|  (r(-1)/B)  <  x\}  .  (r0  <  (r1  +  (x  *  B)))
4.  \mforall{}x:\mBbbR{}.  (r0  <  (r1  +  x\^{}2))
5.  d(arctangent(x))/dx  =  \mlambda{}x.(r1/r1  +  x\^{}2)  on  (-\minfty{},  \minfty{})
6.  \mforall{}x1:\{x:\mBbbR{}|  x  \mmember{}  ((r(-1)/B),  \minfty{})\}  .  (r0  <  r1  +  (x1  *  B)\^{}2)
7.  d(arctangent((x  -  B/r1  +  (x  *  B))))/dx  =  \mlambda{}x.((r1  +  (B  *  B)/r1  +  (x  *  B)\^{}2)/r1
+  (x  -  B/r1  +  (x  *  B))\^{}2)  on  ((r(-1)/B),  \minfty{})
8.  x1  :  \{x:\mBbbR{}|  x  \mmember{}  ((r(-1)/B),  \minfty{})\} 
9.  \mforall{}x1:\{x:\mBbbR{}|  x  \mmember{}  ((r(-1)/B),  \minfty{})\} 
          ((r0  <  (r1  +  (x1  *  B)))  \mwedge{}  (r0  <  ((r1  +  (x1  *  B))  *  (r1  +  (x1  *  B))))  \mwedge{}  (r0  <  r1  +  (x1  *  B)\^{}2))
10.  v  :  \mBbbR{}
11.  (r1  +  (x1  *  B))  =  v
\mvdash{}  (r0  <  v)  {}\mRightarrow{}  (((r1  +  (B  *  B)/v\^{}2)/r1  +  (x1  -  B/v)\^{}2)  =  (r1/r1  +  x1\^{}2))


By


Latex:
((D  0  THENA  Auto)
  THEN  (Assert  r0  \mleq{}  (x1  -  B/v)\^{}2  BY
                          (GenConcl  \mkleeneopen{}(x1  -  B/v)  =  a\mkleeneclose{}\mcdot{}  THEN  Auto))
  THEN  (Assert  r0  <  (r1  +  (x1  -  B/v)\^{}2)  BY
                          (RWO  "-1<"  0  THEN  Auto)))




Home Index