Step
*
of Lemma
integral-single
∀[a:ℝ]. ∀[f:{f:[a, a] ⟶ℝ| ifun(f;[a, a])} ]. (a_∫-a f[x] dx = r0)
BY
{ (Intro
THEN (Assert a ≤ rmin(a;a) BY
((Unhide THENA Auto) THEN BLemma `rmin_ub` THEN Auto))
THEN (Assert rmax(a;a) ≤ a BY
((Unhide THENA Auto) THEN BLemma `rmax_lb` THEN Auto))) }
1
1. [a] : ℝ
2. a ≤ rmin(a;a)
3. rmax(a;a) ≤ a
⊢ ∀[f:{f:[a, a] ⟶ℝ| ifun(f;[a, a])} ]. (a_∫-a f[x] dx = r0)
Latex:
Latex:
\mforall{}[a:\mBbbR{}]. \mforall{}[f:\{f:[a, a] {}\mrightarrow{}\mBbbR{}| ifun(f;[a, a])\} ]. (a\_\mint{}\msupminus{}a f[x] dx = r0)
By
Latex:
(Intro
THEN (Assert a \mleq{} rmin(a;a) BY
((Unhide THENA Auto) THEN BLemma `rmin\_ub` THEN Auto))
THEN (Assert rmax(a;a) \mleq{} a BY
((Unhide THENA Auto) THEN BLemma `rmax\_lb` THEN Auto)))
Home
Index