Nuprl Lemma : integral-single
∀[a:ℝ]. ∀[f:{f:[a, a] ⟶ℝ| ifun(f;[a, a])} ].  (a_∫-a f[x] dx = r0)
Proof
Definitions occuring in Statement : 
integral: a_∫-b f[x] dx, 
ifun: ifun(f;I), 
rfun: I ⟶ℝ, 
rccint: [l, u], 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
and: P ∧ Q, 
cand: A c∧ B, 
uimplies: b supposing a, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
integral: a_∫-b f[x] dx, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
label: ...$L... t, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
top: Top, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
sq_stable__rleq, 
rmin_wf, 
rmax_wf, 
real_wf, 
rleq_weakening_equal, 
rleq_wf, 
squash_wf, 
true_wf, 
rmin-idempotent-eq, 
iff_weakening_equal, 
rmin_ub, 
rmax_lb, 
req_witness, 
i-member_wf, 
rccint_wf, 
ifun_wf, 
icompact_wf, 
rfun_wf, 
interval_wf, 
eta_conv, 
rccint-icompact, 
ifun_subtype_3, 
rmin-rleq-rmax, 
integral_wf, 
int-to-real_wf, 
set_wf, 
rsub_wf, 
rmin-rleq, 
Riemann-integral_wf, 
rmin-idempotent, 
real_term_polynomial, 
itermSubtract_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
req-iff-rsub-is-0, 
req_functionality, 
rsub_functionality, 
Riemann-integral-single, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
universeEquality, 
productElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
setEquality, 
computeAll, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[f:\{f:[a,  a]  {}\mrightarrow{}\mBbbR{}|  ifun(f;[a,  a])\}  ].    (a\_\mint{}\msupminus{}a  f[x]  dx  =  r0)
Date html generated:
2017_10_04-PM-10_15_48
Last ObjectModification:
2017_07_28-AM-08_47_47
Theory : reals_2
Home
Index