Nuprl Lemma : rmin-idempotent
∀[x:ℝ]. (rmin(x;x) = x)
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y)
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
Lemmas referenced : 
rmin-rleq, 
rmin_ub, 
rleq_weakening_equal, 
rleq_antisymmetry, 
req_witness, 
rmin_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
productElimination, 
hypothesis, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}[x:\mBbbR{}].  (rmin(x;x)  =  x)
Date html generated:
2016_05_18-AM-07_20_03
Last ObjectModification:
2015_12_28-AM-00_47_03
Theory : reals
Home
Index