Nuprl Lemma : rmin-idempotent

[x:ℝ]. (rmin(x;x) x)


Proof




Definitions occuring in Statement :  rmin: rmin(x;y) req: y real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B all: x:A. B[x] iff: ⇐⇒ Q implies:  Q uimplies: supposing a
Lemmas referenced :  rmin-rleq rmin_ub rleq_weakening_equal rleq_antisymmetry req_witness rmin_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache productElimination hypothesis independent_pairFormation dependent_functionElimination independent_functionElimination independent_isectElimination

Latex:
\mforall{}[x:\mBbbR{}].  (rmin(x;x)  =  x)



Date html generated: 2016_05_18-AM-07_20_03
Last ObjectModification: 2015_12_28-AM-00_47_03

Theory : reals


Home Index