Nuprl Lemma : rmin-idempotent-eq

[x:ℝ]. (rmin(x;x) x ∈ ℝ)


Proof




Definitions occuring in Statement :  rmin: rmin(x;y) real: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] real: member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: rmin: rmin(x;y) implies:  Q all: x:A. B[x] top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) uimplies: supposing a uiff: uiff(P;Q)
Lemmas referenced :  real-regular less_than_wf regular-int-seq_wf real_wf nat_plus_wf equal_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le nat_plus_properties le-iff-imin
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut equalitySymmetry dependent_set_memberEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed hypothesis functionExtensionality independent_functionElimination dependent_functionElimination equalityTransitivity lambdaFormation intEquality rename setElimination applyEquality computeAll voidEquality voidElimination isect_memberEquality int_eqEquality lambdaEquality dependent_pairFormation unionElimination independent_isectElimination productElimination because_Cache

Latex:
\mforall{}[x:\mBbbR{}].  (rmin(x;x)  =  x)



Date html generated: 2017_10_03-AM-08_33_30
Last ObjectModification: 2017_09_20-PM-05_36_25

Theory : reals


Home Index