Nuprl Lemma : rmin-idempotent-eq
∀[x:ℝ]. (rmin(x;x) = x ∈ ℝ)
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
real: ℝ
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
rmin: rmin(x;y)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
Lemmas referenced : 
real-regular, 
less_than_wf, 
regular-int-seq_wf, 
real_wf, 
nat_plus_wf, 
equal_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_plus_properties, 
le-iff-imin
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
equalitySymmetry, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
hypothesis, 
functionExtensionality, 
independent_functionElimination, 
dependent_functionElimination, 
equalityTransitivity, 
lambdaFormation, 
intEquality, 
rename, 
setElimination, 
applyEquality, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
unionElimination, 
independent_isectElimination, 
productElimination, 
because_Cache
Latex:
\mforall{}[x:\mBbbR{}].  (rmin(x;x)  =  x)
Date html generated:
2017_10_03-AM-08_33_30
Last ObjectModification:
2017_09_20-PM-05_36_25
Theory : reals
Home
Index