Nuprl Lemma : arrow_prod_lemma

y,x,B,A:Top.  (cat-arrow(A × B) cat-arrow(A) (fst(x)) (fst(y)) × (cat-arrow(B) (snd(x)) (snd(y))))


Proof




Definitions occuring in Statement :  product-cat: A × B cat-arrow: cat-arrow(C) top: Top pi1: fst(t) pi2: snd(t) all: x:A. B[x] apply: a product: x:A × B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] cat-arrow: cat-arrow(C) product-cat: A × B pi2: snd(t) pi1: fst(t) member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis introduction extract_by_obid

Latex:
\mforall{}y,x,B,A:Top.
    (cat-arrow(A  \mtimes{}  B)  x  y  \msim{}  cat-arrow(A)  (fst(x))  (fst(y))  \mtimes{}  (cat-arrow(B)  (snd(x))  (snd(y))))



Date html generated: 2017_01_10-AM-08_41_30
Last ObjectModification: 2017_01_09-PM-00_43_24

Theory : small!categories


Home Index