Step
*
of Lemma
equal-presheaves
∀[C:SmallCategory]. ∀[F,G:Presheaf(C)].
F = G ∈ Presheaf(C)
supposing (∀x:cat-ob(op-cat(C)). ((ob(F) x) = (ob(G) x) ∈ cat-ob(TypeCat)))
∧ (∀x,y:cat-ob(op-cat(C)). ∀f:cat-arrow(op-cat(C)) x y.
((arrow(F) x y f) = (arrow(G) x y f) ∈ (cat-arrow(TypeCat) (ob(F) x) (ob(F) y))))
BY
{ (Auto
THEN All
(Unfold `presheaf`)⋅
THEN InstLemma `equal-functors` [⌜parm{i'}⌝;⌜op-cat(C)⌝;⌜TypeCat⌝;⌜F⌝;⌜G⌝]⋅
THEN Try (Complete (Auto))) }
Latex:
Latex:
\mforall{}[C:SmallCategory]. \mforall{}[F,G:Presheaf(C)].
F = G
supposing (\mforall{}x:cat-ob(op-cat(C)). ((ob(F) x) = (ob(G) x)))
\mwedge{} (\mforall{}x,y:cat-ob(op-cat(C)). \mforall{}f:cat-arrow(op-cat(C)) x y. ((arrow(F) x y f) = (arrow(G) x y f)))
By
Latex:
(Auto
THEN All
(Unfold `presheaf`)\mcdot{}
THEN InstLemma `equal-functors` [\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}op-cat(C)\mkleeneclose{};\mkleeneopen{}TypeCat\mkleeneclose{};\mkleeneopen{}F\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{}]\mcdot{}
THEN Try (Complete (Auto)))
Home
Index