Nuprl Lemma : equal-presheaves
∀[C:SmallCategory]. ∀[F,G:Presheaf(C)].
F = G ∈ Presheaf(C)
supposing (∀x:cat-ob(op-cat(C)). ((ob(F) x) = (ob(G) x) ∈ cat-ob(TypeCat)))
∧ (∀x,y:cat-ob(op-cat(C)). ∀f:cat-arrow(op-cat(C)) x y.
((arrow(F) x y f) = (arrow(G) x y f) ∈ (cat-arrow(TypeCat) (ob(F) x) (ob(F) y))))
Proof
Definitions occuring in Statement :
presheaf: Presheaf(C)
,
type-cat: TypeCat
,
op-cat: op-cat(C)
,
functor-arrow: arrow(F)
,
functor-ob: ob(F)
,
cat-arrow: cat-arrow(C)
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
apply: f a
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
presheaf: Presheaf(C)
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
squash: ↓T
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
equal-functors,
op-cat_wf,
type-cat_wf,
all_wf,
cat-ob_wf,
equal_wf,
functor-ob_wf,
small-category-subtype,
cat-arrow_wf,
functor-arrow_wf,
subtype_rel-equal,
squash_wf,
true_wf,
iff_weakening_equal,
presheaf_wf,
small-category_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
instantiate,
extract_by_obid,
isectElimination,
hypothesisEquality,
applyEquality,
because_Cache,
hypothesis,
sqequalRule,
independent_isectElimination,
productEquality,
lambdaEquality,
cumulativity,
universeEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_functionElimination,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[C:SmallCategory]. \mforall{}[F,G:Presheaf(C)].
F = G
supposing (\mforall{}x:cat-ob(op-cat(C)). ((ob(F) x) = (ob(G) x)))
\mwedge{} (\mforall{}x,y:cat-ob(op-cat(C)). \mforall{}f:cat-arrow(op-cat(C)) x y. ((arrow(F) x y f) = (arrow(G) x y f)))
Date html generated:
2017_10_05-AM-00_47_28
Last ObjectModification:
2017_10_03-PM-02_24_56
Theory : small!categories
Home
Index