Nuprl Lemma : functor-arrow_wf

[C,D:SmallCategory]. ∀[F:Functor(C;D)].
  (functor-arrow(F) ∈ x:cat-ob(C)
   ⟶ y:cat-ob(C)
   ⟶ (cat-arrow(C) y)
   ⟶ (cat-arrow(D) (functor-ob(F) x) (functor-ob(F) y)))


Proof




Definitions occuring in Statement :  functor-arrow: functor-arrow(F) functor-ob: functor-ob(F) cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  pi1: fst(t) functor-ob: functor-ob(F) pi2: snd(t) cat-functor: Functor(C1;C2) functor-arrow: functor-arrow(F) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat-functor_wf
Rules used in proof :  because_Cache isect_memberEquality isectElimination lemma_by_obid equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality productElimination rename thin setElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].
    (functor-arrow(F)  \mmember{}  x:cat-ob(C)
      {}\mrightarrow{}  y:cat-ob(C)
      {}\mrightarrow{}  (cat-arrow(C)  x  y)
      {}\mrightarrow{}  (cat-arrow(D)  (functor-ob(F)  x)  (functor-ob(F)  y)))



Date html generated: 2016_05_18-AM-11_52_20
Last ObjectModification: 2015_12_28-PM-02_23_51

Theory : small!categories


Home Index