Step * 5 of Lemma free-dist-lattice-adjunction


1. ∀Y:Type. (Point(free-dl(Y)) free-dl-type(Y))
2. ∀Y:Type. ∀y:Y.  (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. a1 Type
4. a2 Type
5. a1 ⟶ a2
⊢ (fdl-hom(free-dl(a2);λx.free-dl-generator(g x)) x.free-dl-generator(x)))
((λx.free-dl-generator(x)) g)
∈ (a1 ⟶ Point(free-dl(a2)))
BY
((FunExt THENA Auto) THEN RepUR ``compose`` 0) }

1
1. ∀Y:Type. (Point(free-dl(Y)) free-dl-type(Y))
2. ∀Y:Type. ∀y:Y.  (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. a1 Type
4. a2 Type
5. a1 ⟶ a2
6. a1
⊢ (fdl-hom(free-dl(a2);λx.free-dl-generator(g x)) free-dl-generator(x)) free-dl-generator(g x) ∈ Point(free-dl(a2))


Latex:


Latex:

1.  \mforall{}Y:Type.  (Point(free-dl(Y))  \msim{}  free-dl-type(Y))
2.  \mforall{}Y:Type.  \mforall{}y:Y.    (free-dl-generator(y)  \mmember{}  Point(free-dl(Y)))
3.  a1  :  Type
4.  a2  :  Type
5.  g  :  a1  {}\mrightarrow{}  a2
\mvdash{}  (fdl-hom(free-dl(a2);\mlambda{}x.free-dl-generator(g  x))  o  (\mlambda{}x.free-dl-generator(x)))
=  ((\mlambda{}x.free-dl-generator(x))  o  g)


By


Latex:
((FunExt  THENA  Auto)  THEN  RepUR  ``compose``  0)




Home Index