Nuprl Lemma : free-dist-lattice-adjunction

FreeDistLattice -| ForgetLattice


Proof




Definitions occuring in Statement :  counit-unit-adjunction: -| G forget-lattice: ForgetLattice free-dl-functor: FreeDistLattice distributive-lattice-cat: BddDistributiveLattice type-cat: TypeCat
Definitions unfolded in proof :  all: x:A. B[x] lattice-point: Point(l) record-select: r.x free-dl: free-dl(X) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt free-dl-type: free-dl-type(X) quotient: x,y:A//B[x; y] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] free-dl-functor: FreeDistLattice distributive-lattice-cat: BddDistributiveLattice top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_apply: x[s] forget-lattice: ForgetLattice mk-cat: mk-cat bdd-distributive-lattice: BoundedDistributiveLattice cat-ob: cat-ob(C) pi1: fst(t) type-cat: TypeCat guard: {T} subtype_rel: A ⊆B uimplies: supposing a prop: and: P ∧ Q counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta) cand: c∧ B compose: g bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) squash: T true: True free-dl-generator: free-dl-generator(x) fdl-hom: fdl-hom(L;f) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q implies:  Q cons: [a b]
Lemmas referenced :  free-dl-generator_wf mk-adjunction_wf type-cat_wf distributive-lattice-cat_wf free-dl-functor_wf forget-lattice_wf ob_mk_functor_lemma cat_arrow_triple_lemma fdl-hom_wf lattice-point_wf cat-ob_wf arrow_mk_functor_lemma cat_ob_pair_lemma cat_comp_tuple_lemma bounded-lattice-hom_wf bdd-distributive-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf cat_id_tuple_lemma free-dl-generators free-dl_wf id-is-bounded-lattice-hom bdd-distributive-lattice-subtype-bdd-lattice subtype_rel_self compose-bounded-lattice-hom fdl-hom-agrees squash_wf true_wf list_accum_cons_lemma list_accum_nil_lemma lattice-0_wf lattice-1-meet iff_weakening_equal lattice-join-0
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule universeEquality hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality introduction extract_by_obid isectElimination because_Cache instantiate lambdaEquality isect_memberEquality voidElimination voidEquality applyEquality independent_isectElimination setElimination rename functionEquality productEquality cumulativity independent_pairFormation applyLambdaEquality hyp_replacement equalitySymmetry imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed functionExtensionality productElimination independent_functionElimination comment

Latex:
FreeDistLattice  -|  ForgetLattice



Date html generated: 2018_05_22-PM-09_57_31
Last ObjectModification: 2018_05_20-PM-10_10_04

Theory : small!categories


Home Index