Nuprl Lemma : free-dist-lattice-adjunction
FreeDistLattice -| ForgetLattice
Proof
Definitions occuring in Statement : 
counit-unit-adjunction: F -| G, 
forget-lattice: ForgetLattice, 
free-dl-functor: FreeDistLattice, 
distributive-lattice-cat: BddDistributiveLattice, 
type-cat: TypeCat
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
lattice-point: Point(l), 
record-select: r.x, 
free-dl: free-dl(X), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
free-dl-type: free-dl-type(X), 
quotient: x,y:A//B[x; y], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
free-dl-functor: FreeDistLattice, 
distributive-lattice-cat: BddDistributiveLattice, 
top: Top, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
so_apply: x[s], 
forget-lattice: ForgetLattice, 
mk-cat: mk-cat, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
cat-ob: cat-ob(C), 
pi1: fst(t), 
type-cat: TypeCat, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
prop: ℙ, 
and: P ∧ Q, 
counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta), 
cand: A c∧ B, 
compose: f o g, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
squash: ↓T, 
true: True, 
free-dl-generator: free-dl-generator(x), 
fdl-hom: fdl-hom(L;f), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
cons: [a / b]
Lemmas referenced : 
free-dl-generator_wf, 
mk-adjunction_wf, 
type-cat_wf, 
distributive-lattice-cat_wf, 
free-dl-functor_wf, 
forget-lattice_wf, 
ob_mk_functor_lemma, 
cat_arrow_triple_lemma, 
fdl-hom_wf, 
lattice-point_wf, 
cat-ob_wf, 
arrow_mk_functor_lemma, 
cat_ob_pair_lemma, 
cat_comp_tuple_lemma, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
cat_id_tuple_lemma, 
free-dl-generators, 
free-dl_wf, 
id-is-bounded-lattice-hom, 
bdd-distributive-lattice-subtype-bdd-lattice, 
subtype_rel_self, 
compose-bounded-lattice-hom, 
fdl-hom-agrees, 
squash_wf, 
true_wf, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
lattice-0_wf, 
lattice-1-meet, 
iff_weakening_equal, 
lattice-join-0
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
universeEquality, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
instantiate, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
functionEquality, 
productEquality, 
cumulativity, 
independent_pairFormation, 
applyLambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionExtensionality, 
productElimination, 
independent_functionElimination, 
comment
Latex:
FreeDistLattice  -|  ForgetLattice
Date html generated:
2018_05_22-PM-09_57_31
Last ObjectModification:
2018_05_20-PM-10_10_04
Theory : small!categories
Home
Index