Nuprl Lemma : ob_mk_functor_lemma
∀t,arrow,ob:Top.  (ob(functor(ob(x) = ob[x];arrow(u,v,f) = arrow[u;v;f])) t ~ ob[t])
Proof
Definitions occuring in Statement : 
functor-ob: ob(F)
, 
mk-functor: mk-functor, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
mk-functor: mk-functor, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}t,arrow,ob:Top.    (ob(functor(ob(x)  =  ob[x];arrow(u,v,f)  =  arrow[u;v;f]))  t  \msim{}  ob[t])
Date html generated:
2017_01_19-PM-02_52_15
Last ObjectModification:
2017_01_13-PM-00_38_47
Theory : small!categories
Home
Index