Nuprl Lemma : fdl-hom_wf
∀[X:Type]. ∀[L:BoundedDistributiveLattice]. ∀[f:X ⟶ Point(L)].  (fdl-hom(L;f) ∈ Hom(free-dl(X);L))
Proof
Definitions occuring in Statement : 
fdl-hom: fdl-hom(L;f)
, 
free-dl: free-dl(X)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
fdl-hom: fdl-hom(L;f)
, 
list_accum: list_accum, 
lattice-0: 0
, 
record-select: r.x
, 
free-dl: free-dl(X)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
nil: []
, 
it: ⋅
, 
lattice-1: 1
, 
cons: [a / b]
, 
lattice-join: a ∨ b
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
free-dl-join: free-dl-join(as;bs)
, 
append: as @ bs
, 
list_ind: list_ind, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
free-dl-type: free-dl-type(X)
, 
cand: A c∧ B
, 
dlattice-eq: dlattice-eq(X;as;bs)
, 
quotient: x,y:A//B[x; y]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
dlattice-order: as 
⇒ bs
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
select: L[n]
, 
lattice-le: a ≤ b
, 
l_contains: A ⊆ B
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
istype: istype(T)
, 
order: Order(T;x,y.R[x; y])
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
lattice-point: Point(l)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
sym: Sym(T;x,y.E[x; y])
, 
lattice-meet: a ∧ b
, 
free-dl-meet: free-dl-meet(as;bs)
, 
map: map(f;as)
, 
listp: A List+
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
bdd-distributive-lattice_wf, 
istype-universe, 
lattice-0_wf, 
lattice-join-0, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-1_wf, 
list_accum_nil_lemma, 
istype-void, 
list_wf, 
list_accum_append, 
subtype_rel_list, 
top_wf, 
fdl-hom_wf1, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
list_accum_cons_lemma, 
istype-nat, 
unit_wf2, 
unit_subtype_base, 
it_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
cons_wf, 
list_accum_wf, 
lattice_properties, 
bdd-distributive-lattice-subtype-lattice, 
dlattice-eq-equiv, 
dlattice-eq_wf, 
member_wf, 
free-dl-type_wf, 
last_induction, 
all_wf, 
dlattice-order_wf, 
lattice-le_wf, 
nil_wf, 
append_wf, 
lattice-0-le, 
lattice-join-le, 
l_all_append, 
l_exists_wf, 
l_member_wf, 
l_contains_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
l_exists_iff, 
lattice-le_transitivity, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
cons_member, 
lattice-le_weakening, 
le-lattice-1, 
l_all_cons, 
add_nat_plus, 
length_wf_nat, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
false_wf, 
length_wf, 
lattice-meet-le, 
lattice-le-meet, 
lattice-le-order, 
free-dl_wf, 
quotient-member-eq, 
subtype_quotient, 
free-dl-meet_wf, 
lattice-meet-0, 
cons_wf_listp, 
less_than_wf, 
distributive-lattice-distrib, 
bdd-distributive-lattice-subtype-distributive-lattice, 
free-dl-meet_wf_list, 
list_ind_nil_lemma, 
map_nil_lemma, 
lattice-0-meet, 
map_cons_lemma, 
map_wf, 
lattice-meet-1, 
lattice-1-meet
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
thin, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
inhabitedIsType, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality, 
independent_pairFormation, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
voidElimination, 
lambdaFormation_alt, 
equalityIsType1, 
independent_functionElimination, 
intWeakElimination, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
functionIsTypeImplies, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
imageElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
imageMemberEquality, 
functionExtensionality, 
pointwiseFunctionality, 
pertypeElimination, 
productIsType, 
functionEquality, 
setIsType, 
hyp_replacement, 
addEquality, 
independent_pairEquality, 
isectIsType
Latex:
\mforall{}[X:Type].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[f:X  {}\mrightarrow{}  Point(L)].    (fdl-hom(L;f)  \mmember{}  Hom(free-dl(X);L))
Date html generated:
2019_10_31-AM-07_20_49
Last ObjectModification:
2018_11_13-AM-10_25_36
Theory : lattices
Home
Index