Nuprl Lemma : fdl-hom_wf

[X:Type]. ∀[L:BoundedDistributiveLattice]. ∀[f:X ⟶ Point(L)].  (fdl-hom(L;f) ∈ Hom(free-dl(X);L))


Proof




Definitions occuring in Statement :  fdl-hom: fdl-hom(L;f) free-dl: free-dl(X) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a fdl-hom: fdl-hom(L;f) list_accum: list_accum lattice-0: 0 record-select: r.x free-dl: free-dl(X) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt nil: [] it: lattice-1: 1 cons: [a b] lattice-join: a ∨ b all: x:A. B[x] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] free-dl-join: free-dl-join(as;bs) append: as bs list_ind: list_ind implies:  Q nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) colength: colength(L) guard: {T} sq_type: SQType(T) less_than: a < b squash: T decidable: Dec(P) true: True iff: ⇐⇒ Q rev_implies:  Q free-dl-type: free-dl-type(X) cand: c∧ B dlattice-eq: dlattice-eq(X;as;bs) quotient: x,y:A//B[x; y] equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) dlattice-order: as  bs l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k select: L[n] lattice-le: a ≤ b l_contains: A ⊆ B nat_plus: + uiff: uiff(P;Q) istype: istype(T) order: Order(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) lattice-point: Point(l) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) sym: Sym(T;x,y.E[x; y]) lattice-meet: a ∧ b free-dl-meet: free-dl-meet(as;bs) map: map(f;as) listp: List+ so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf bdd-distributive-lattice_wf istype-universe lattice-0_wf lattice-join-0 bdd-distributive-lattice-subtype-bdd-lattice lattice-1_wf list_accum_nil_lemma istype-void list_wf list_accum_append subtype_rel_list top_wf fdl-hom_wf1 nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-false istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf list_accum_cons_lemma istype-nat unit_wf2 unit_subtype_base it_wf squash_wf true_wf subtype_rel_self iff_weakening_equal cons_wf list_accum_wf lattice_properties bdd-distributive-lattice-subtype-lattice dlattice-eq-equiv dlattice-eq_wf member_wf free-dl-type_wf last_induction all_wf dlattice-order_wf lattice-le_wf nil_wf append_wf lattice-0-le lattice-join-le l_all_append l_exists_wf l_member_wf l_contains_wf length_of_cons_lemma length_of_nil_lemma l_exists_iff lattice-le_transitivity null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse cons_member lattice-le_weakening le-lattice-1 l_all_cons add_nat_plus length_wf_nat nat_plus_properties decidable__lt add-is-int-iff false_wf length_wf lattice-meet-le lattice-le-meet lattice-le-order free-dl_wf quotient-member-eq subtype_quotient free-dl-meet_wf lattice-meet-0 cons_wf_listp less_than_wf distributive-lattice-distrib bdd-distributive-lattice-subtype-distributive-lattice free-dl-meet_wf_list list_ind_nil_lemma map_nil_lemma lattice-0-meet map_cons_lemma map_wf lattice-meet-1 lattice-1-meet
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType hypothesisEquality extract_by_obid isectElimination thin applyEquality instantiate lambdaEquality_alt productEquality cumulativity inhabitedIsType because_Cache independent_isectElimination isect_memberEquality_alt isectIsTypeImplies universeEquality independent_pairFormation setElimination rename productElimination dependent_functionElimination voidElimination lambdaFormation_alt equalityIsType1 independent_functionElimination intWeakElimination natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality functionIsTypeImplies unionElimination promote_hyp hypothesis_subsumption dependent_set_memberEquality_alt applyLambdaEquality imageElimination equalityIsType4 baseApply closedConclusion baseClosed intEquality imageMemberEquality functionExtensionality pointwiseFunctionality pertypeElimination productIsType functionEquality setIsType hyp_replacement addEquality independent_pairEquality isectIsType

Latex:
\mforall{}[X:Type].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[f:X  {}\mrightarrow{}  Point(L)].    (fdl-hom(L;f)  \mmember{}  Hom(free-dl(X);L))



Date html generated: 2019_10_31-AM-07_20_49
Last ObjectModification: 2018_11_13-AM-10_25_36

Theory : lattices


Home Index