Nuprl Lemma : fdl-hom_wf1

[X:Type]. ∀[L:BoundedDistributiveLattice]. ∀[f:X ⟶ Point(L)].  (fdl-hom(L;f) ∈ (X List List) ⟶ Point(L))


Proof




Definitions occuring in Statement :  fdl-hom: fdl-hom(L;f) bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) list: List uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fdl-hom: fdl-hom(L;f) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf list_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf lattice-0_wf lattice-1_wf bdd-distributive-lattice_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate productEquality because_Cache inhabitedIsType universeIsType independent_isectElimination setElimination rename axiomEquality equalityTransitivity equalitySymmetry functionIsType cumulativity isect_memberEquality_alt isectIsTypeImplies universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[f:X  {}\mrightarrow{}  Point(L)].
    (fdl-hom(L;f)  \mmember{}  (X  List  List)  {}\mrightarrow{}  Point(L))



Date html generated: 2019_10_31-AM-07_20_20
Last ObjectModification: 2018_11_13-AM-10_13_59

Theory : lattices


Home Index