Nuprl Lemma : fdl-hom_wf1
∀[X:Type]. ∀[L:BoundedDistributiveLattice]. ∀[f:X ⟶ Point(L)].  (fdl-hom(L;f) ∈ (X List List) ⟶ Point(L))
Proof
Definitions occuring in Statement : 
fdl-hom: fdl-hom(L;f)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-point: Point(l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fdl-hom: fdl-hom(L;f)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
list_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-0_wf, 
lattice-1_wf, 
bdd-distributive-lattice_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
productEquality, 
because_Cache, 
inhabitedIsType, 
universeIsType, 
independent_isectElimination, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
cumulativity, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[f:X  {}\mrightarrow{}  Point(L)].
    (fdl-hom(L;f)  \mmember{}  (X  List  List)  {}\mrightarrow{}  Point(L))
Date html generated:
2019_10_31-AM-07_20_20
Last ObjectModification:
2018_11_13-AM-10_13_59
Theory : lattices
Home
Index