Nuprl Lemma : distributive-lattice-cat_wf
BddDistributiveLattice ∈ SmallCategory'
Proof
Definitions occuring in Statement : 
distributive-lattice-cat: BddDistributiveLattice, 
small-category: SmallCategory, 
member: t ∈ T
Definitions unfolded in proof : 
distributive-lattice-cat: BddDistributiveLattice, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x y.t[x; y], 
bdd-distributive-lattice: BoundedDistributiveLattice, 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]), 
so_apply: x[s1;s2;s3;s4;s5], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
compose: f o g, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
mk-cat_wf, 
bdd-distributive-lattice_wf, 
bounded-lattice-hom_wf, 
id-is-bounded-lattice-hom, 
bdd-distributive-lattice-subtype-bdd-lattice, 
compose-bounded-lattice-hom, 
bounded-lattice-hom-equal, 
equal_wf, 
comp_assoc, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_functionElimination
Latex:
BddDistributiveLattice  \mmember{}  SmallCategory'
Date html generated:
2017_10_05-AM-00_51_33
Last ObjectModification:
2017_07_28-AM-09_20_30
Theory : small!categories
Home
Index