Nuprl Lemma : bounded-lattice-hom-equal

[l1,l2:BoundedLatticeStructure]. ∀[f,g:Hom(l1;l2)].
  g ∈ Hom(l1;l2) supposing ∀x:Point(l1). ((f x) (g x) ∈ Point(l2))


Proof




Definitions occuring in Statement :  bounded-lattice-hom: Hom(l1;l2) bounded-lattice-structure: BoundedLatticeStructure lattice-point: Point(l) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bounded-lattice-hom: Hom(l1;l2) and: P ∧ Q lattice-hom: Hom(l1;l2) squash: T prop: subtype_rel: A ⊆B all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf squash_wf true_wf lattice-point_wf bounded-lattice-structure-subtype iff_weakening_equal uall_wf lattice-meet_wf lattice-join_wf lattice-0_wf lattice-1_wf all_wf bounded-lattice-hom_wf bounded-lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality productElimination functionExtensionality applyEquality lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality sqequalRule dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination because_Cache productEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[l1,l2:BoundedLatticeStructure].  \mforall{}[f,g:Hom(l1;l2)].    f  =  g  supposing  \mforall{}x:Point(l1).  ((f  x)  =  (g  x))



Date html generated: 2017_10_05-AM-00_30_38
Last ObjectModification: 2017_07_28-AM-09_12_39

Theory : lattices


Home Index