Nuprl Lemma : fdl-hom-agrees
∀[X:Type]. ∀[L:BoundedDistributiveLattice]. ∀[f:X ⟶ Point(L)].
∀x:X. ((fdl-hom(L;f) free-dl-generator(x)) = (f x) ∈ Point(L))
Proof
Definitions occuring in Statement :
fdl-hom: fdl-hom(L;f)
,
free-dl-generator: free-dl-generator(x)
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
lattice-point: Point(l)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
free-dl-generator: free-dl-generator(x)
,
fdl-hom: fdl-hom(L;f)
,
top: Top
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
squash: ↓T
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
so_lambda: λ2x.t[x]
,
and: P ∧ Q
,
so_apply: x[s]
,
uimplies: b supposing a
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
list_accum_cons_lemma,
list_accum_nil_lemma,
equal_wf,
squash_wf,
true_wf,
lattice-point_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
uall_wf,
lattice-meet_wf,
lattice-join_wf,
lattice-0_wf,
lattice-1-meet,
bdd-distributive-lattice-subtype-bdd-lattice,
iff_weakening_equal,
lattice-join-0,
bdd-distributive-lattice_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
applyEquality,
lambdaEquality,
imageElimination,
isectElimination,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
because_Cache,
instantiate,
productEquality,
independent_isectElimination,
setElimination,
rename,
functionExtensionality,
cumulativity,
natural_numberEquality,
imageMemberEquality,
baseClosed,
universeEquality,
productElimination,
independent_functionElimination,
axiomEquality,
functionEquality
Latex:
\mforall{}[X:Type]. \mforall{}[L:BoundedDistributiveLattice]. \mforall{}[f:X {}\mrightarrow{} Point(L)].
\mforall{}x:X. ((fdl-hom(L;f) free-dl-generator(x)) = (f x))
Date html generated:
2017_10_05-AM-00_32_58
Last ObjectModification:
2017_07_28-AM-09_13_34
Theory : lattices
Home
Index