Nuprl Lemma : fdl-hom-agrees

[X:Type]. ∀[L:BoundedDistributiveLattice]. ∀[f:X ⟶ Point(L)].
  ∀x:X. ((fdl-hom(L;f) free-dl-generator(x)) (f x) ∈ Point(L))


Proof




Definitions occuring in Statement :  fdl-hom: fdl-hom(L;f) free-dl-generator: free-dl-generator(x) bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] free-dl-generator: free-dl-generator(x) fdl-hom: fdl-hom(L;f) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  list_accum_cons_lemma list_accum_nil_lemma equal_wf squash_wf true_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-0_wf lattice-1-meet bdd-distributive-lattice-subtype-bdd-lattice iff_weakening_equal lattice-join-0 bdd-distributive-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis applyEquality lambdaEquality imageElimination isectElimination hypothesisEquality equalityTransitivity equalitySymmetry because_Cache instantiate productEquality independent_isectElimination setElimination rename functionExtensionality cumulativity natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination axiomEquality functionEquality

Latex:
\mforall{}[X:Type].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[f:X  {}\mrightarrow{}  Point(L)].
    \mforall{}x:X.  ((fdl-hom(L;f)  free-dl-generator(x))  =  (f  x))



Date html generated: 2017_10_05-AM-00_32_58
Last ObjectModification: 2017_07_28-AM-09_13_34

Theory : lattices


Home Index