Nuprl Lemma : free-dl-generators
∀[X:Type]
  ∀L:BoundedDistributiveLattice
    ∀[f,g:Hom(free-dl(X);L)].
      f = g ∈ Hom(free-dl(X);L) supposing ∀x:X. ((f free-dl-generator(x)) = (g free-dl-generator(x)) ∈ Point(L))
Proof
Definitions occuring in Statement : 
free-dl-generator: free-dl-generator(x)
, 
free-dl: free-dl(X)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
free-dl: free-dl(X)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
free-dl-type: free-dl-type(X)
, 
quotient: x,y:A//B[x; y]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
true: True
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
append: as @ bs
, 
list_ind: list_ind, 
lattice-join: a ∨ b
, 
free-dl-join: free-dl-join(as;bs)
, 
listp: A List+
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cons: [a / b]
, 
lattice-meet: a ∧ b
, 
free-dl-meet: free-dl-meet(as;bs)
, 
list_accum: list_accum, 
nil: []
, 
it: ⋅
, 
map: map(f;as)
, 
free-dl-generator: free-dl-generator(x)
, 
lattice-1: 1
, 
lattice-0: 0
Lemmas referenced : 
lattice-point_wf, 
free-dl_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-0_wf, 
lattice-1_wf, 
all_wf, 
free-dl-generator_wf, 
subtype_rel_weakening, 
ext-eq_weakening, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
dlattice-eq-equiv, 
list_wf, 
dlattice-eq_wf, 
quotient-member-eq, 
subtype_quotient, 
equal-wf-base, 
squash_wf, 
true_wf, 
accum_induction, 
cons_wf_listp, 
nil_wf, 
less_than_wf, 
length_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
axiomEquality, 
promote_hyp, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
pointwiseFunctionality, 
pertypeElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[X:Type]
    \mforall{}L:BoundedDistributiveLattice
        \mforall{}[f,g:Hom(free-dl(X);L)].
            f  =  g  supposing  \mforall{}x:X.  ((f  free-dl-generator(x))  =  (g  free-dl-generator(x)))
Date html generated:
2017_10_05-AM-00_32_31
Last ObjectModification:
2017_07_28-AM-09_13_30
Theory : lattices
Home
Index