Nuprl Lemma : free-dl-generators

[X:Type]
  ∀L:BoundedDistributiveLattice
    ∀[f,g:Hom(free-dl(X);L)].
      g ∈ Hom(free-dl(X);L) supposing ∀x:X. ((f free-dl-generator(x)) (g free-dl-generator(x)) ∈ Point(L))


Proof




Definitions occuring in Statement :  free-dl-generator: free-dl-generator(x) free-dl: free-dl(X) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] lattice-point: Point(l) record-select: r.x free-dl: free-dl(X) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt free-dl-type: free-dl-type(X) quotient: x,y:A//B[x; y] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a all: x:A. B[x] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) guard: {T} implies:  Q cand: c∧ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T true: True equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) append: as bs list_ind: list_ind lattice-join: a ∨ b free-dl-join: free-dl-join(as;bs) listp: List+ iff: ⇐⇒ Q rev_implies:  Q cons: [a b] lattice-meet: a ∧ b free-dl-meet: free-dl-meet(as;bs) list_accum: list_accum nil: [] it: map: map(f;as) free-dl-generator: free-dl-generator(x) lattice-1: 1 lattice-0: 0
Lemmas referenced :  lattice-point_wf free-dl_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf lattice-0_wf lattice-1_wf all_wf free-dl-generator_wf subtype_rel_weakening ext-eq_weakening bounded-lattice-hom_wf bdd-distributive-lattice_wf dlattice-eq-equiv list_wf dlattice-eq_wf quotient-member-eq subtype_quotient equal-wf-base squash_wf true_wf accum_induction cons_wf_listp nil_wf less_than_wf length_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality applyEquality instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination lambdaFormation setElimination rename dependent_set_memberEquality productElimination functionExtensionality equalityTransitivity equalitySymmetry isect_memberEquality axiomEquality promote_hyp independent_pairFormation dependent_functionElimination independent_functionElimination hyp_replacement applyLambdaEquality pointwiseFunctionality pertypeElimination imageElimination natural_numberEquality imageMemberEquality baseClosed equalityUniverse levelHypothesis

Latex:
\mforall{}[X:Type]
    \mforall{}L:BoundedDistributiveLattice
        \mforall{}[f,g:Hom(free-dl(X);L)].
            f  =  g  supposing  \mforall{}x:X.  ((f  free-dl-generator(x))  =  (g  free-dl-generator(x)))



Date html generated: 2017_10_05-AM-00_32_31
Last ObjectModification: 2017_07_28-AM-09_13_30

Theory : lattices


Home Index