Nuprl Lemma : free-dl-functor_wf
FreeDistLattice ∈ Functor(TypeCat;BddDistributiveLattice)
Proof
Definitions occuring in Statement : 
free-dl-functor: FreeDistLattice, 
distributive-lattice-cat: BddDistributiveLattice, 
type-cat: TypeCat, 
cat-functor: Functor(C1;C2), 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
lattice-point: Point(l), 
record-select: r.x, 
free-dl: free-dl(X), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
free-dl-type: free-dl-type(X), 
quotient: x,y:A//B[x; y], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
free-dl-functor: FreeDistLattice, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
cat-ob: cat-ob(C), 
pi1: fst(t), 
type-cat: TypeCat, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
distributive-lattice-cat: BddDistributiveLattice, 
mk-cat: mk-cat, 
and: P ∧ Q, 
prop: ℙ, 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
uimplies: b supposing a, 
compose: f o g, 
squash: ↓T, 
true: True, 
implies: P ⇒ Q, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
free-dl-generator_wf, 
mk-functor_wf, 
type-cat_wf, 
distributive-lattice-cat_wf, 
free-dl_wf, 
subtype_rel_self, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-point_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
cat-ob_wf, 
cat_arrow_triple_lemma, 
cat_ob_pair_lemma, 
fdl-hom_wf, 
cat-arrow_wf, 
cat_comp_tuple_lemma, 
free-dl-generators, 
compose-bounded-lattice-hom, 
bdd-distributive-lattice-subtype-bdd-lattice, 
cat_id_tuple_lemma, 
id-is-bounded-lattice-hom, 
fdl-hom-agrees, 
squash_wf, 
true_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
universeEquality, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
because_Cache, 
instantiate, 
lambdaEquality, 
applyEquality, 
setEquality, 
productEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionExtensionality, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
functionEquality, 
setElimination, 
rename, 
independent_functionElimination
Latex:
FreeDistLattice  \mmember{}  Functor(TypeCat;BddDistributiveLattice)
Date html generated:
2017_10_05-AM-00_51_44
Last ObjectModification:
2017_07_28-AM-09_20_35
Theory : small!categories
Home
Index