Step
*
2
of Lemma
free-group-adjunction
1. ∀d:Type
((fg-lift(free-group(d);λg.g) o fg-lift(free-group(free-word(d));λx.free-letter(free-letter(x))))
= (λx.x)
∈ MonHom(free-group(d),free-group(d)))
2. c : Group{i}
⊢ (fg-lift(c;λg.g) o (λx.free-letter(x))) = (λx.x) ∈ (|c| ⟶ |c|)
BY
{ (FunExt THEN RepUR ``fg-lift fg-hom free-letter`` 0 THEN Auto) }
Latex:
Latex:
1. \mforall{}d:Type
((fg-lift(free-group(d);\mlambda{}g.g)
o fg-lift(free-group(free-word(d));\mlambda{}x.free-letter(free-letter(x))))
= (\mlambda{}x.x))
2. c : Group\{i\}
\mvdash{} (fg-lift(c;\mlambda{}g.g) o (\mlambda{}x.free-letter(x))) = (\mlambda{}x.x)
By
Latex:
(FunExt THEN RepUR ``fg-lift fg-hom free-letter`` 0 THEN Auto)
Home
Index