Nuprl Lemma : free-group-adjunction
FreeGp -| ForgetGroup
Proof
Definitions occuring in Statement : 
counit-unit-adjunction: F -| G
, 
forget-group: ForgetGroup
, 
free-group-functor: FreeGp
, 
group-cat: Group
, 
type-cat: TypeCat
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
forget-group: ForgetGroup
, 
free-group-functor: FreeGp
, 
group-cat: Group
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
mk-cat: mk-cat, 
subtype_rel: A ⊆r B
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
guard: {T}
, 
uimplies: b supposing a
, 
grp: Group{i}
, 
type-cat: TypeCat
, 
free-group: free-group(X)
, 
grp_car: |g|
, 
counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
mon: Mon
, 
compose: f o g
, 
fg-lift: fg-lift(G;f)
, 
fg-hom: fg-hom(G;f;w)
, 
list_accum: list_accum, 
free-letter: free-letter(x)
, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
infix_ap: x f y
, 
grp_op: *
, 
pi2: snd(t)
, 
free-append: w + w'
, 
append: as @ bs
, 
list_ind: list_ind, 
grp_id: e
, 
free-0: 0
, 
free-word: free-word(X)
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
imon: IMonoid
, 
prop: ℙ
, 
monoid_hom: MonHom(M1,M2)
, 
grp_inv: ~
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
mk-adjunction_wf, 
type-cat_wf, 
group-cat_wf, 
free-group-functor_wf, 
forget-group_wf, 
ob_mk_functor_lemma, 
istype-void, 
cat_arrow_triple_lemma, 
fg-lift_wf, 
grp_car_wf, 
mon_subtype_grp_sig, 
grp_subtype_mon, 
subtype_rel_transitivity, 
subtype_rel_self, 
grp_wf, 
cat-ob_wf, 
free-letter_wf, 
cat_ob_pair_lemma, 
cat_comp_tuple_lemma, 
arrow_mk_functor_lemma, 
cat_id_tuple_lemma, 
istype-universe, 
monoid_hom_wf, 
free-group-generators, 
free-group_wf, 
compose_wf_for_mon_hom, 
id-is-monoid_hom, 
free-word_wf, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
mon_ident, 
grp_sig_wf, 
monoid_p_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
list_ind_nil_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
universeIsType, 
universeEquality, 
lambdaFormation_alt, 
independent_pairFormation, 
setElimination, 
rename, 
inhabitedIsType, 
functionExtensionality_alt, 
functionIsType, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
functionExtensionality, 
setIsType, 
productElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
FreeGp  -|  ForgetGroup
Date html generated:
2019_10_31-AM-07_25_15
Last ObjectModification:
2018_11_08-PM-06_01_02
Theory : small!categories
Home
Index