Nuprl Lemma : free-group-adjunction

FreeGp -| ForgetGroup


Proof




Definitions occuring in Statement :  counit-unit-adjunction: -| G forget-group: ForgetGroup free-group-functor: FreeGp group-cat: Group type-cat: TypeCat
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] forget-group: ForgetGroup free-group-functor: FreeGp group-cat: Group all: x:A. B[x] top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_apply: x[s] mk-cat: mk-cat subtype_rel: A ⊆B cat-ob: cat-ob(C) pi1: fst(t) guard: {T} uimplies: supposing a grp: Group{i} type-cat: TypeCat free-group: free-group(X) grp_car: |g| counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta) and: P ∧ Q cand: c∧ B mon: Mon compose: g fg-lift: fg-lift(G;f) fg-hom: fg-hom(G;f;w) list_accum: list_accum free-letter: free-letter(x) cons: [a b] nil: [] it: infix_ap: y grp_op: * pi2: snd(t) free-append: w' append: as bs list_ind: list_ind grp_id: e free-0: 0 free-word: free-word(X) quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] imon: IMonoid prop: monoid_hom: MonHom(M1,M2) grp_inv: ~ squash: T true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  mk-adjunction_wf type-cat_wf group-cat_wf free-group-functor_wf forget-group_wf ob_mk_functor_lemma istype-void cat_arrow_triple_lemma fg-lift_wf grp_car_wf mon_subtype_grp_sig grp_subtype_mon subtype_rel_transitivity subtype_rel_self grp_wf cat-ob_wf free-letter_wf cat_ob_pair_lemma cat_comp_tuple_lemma arrow_mk_functor_lemma cat_id_tuple_lemma istype-universe monoid_hom_wf free-group-generators free-group_wf compose_wf_for_mon_hom id-is-monoid_hom free-word_wf list_accum_cons_lemma list_accum_nil_lemma mon_ident grp_sig_wf monoid_p_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf list_ind_nil_lemma equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality_alt dependent_functionElimination isect_memberEquality_alt voidElimination hypothesisEquality applyEquality because_Cache independent_isectElimination universeIsType universeEquality lambdaFormation_alt independent_pairFormation setElimination rename inhabitedIsType functionExtensionality_alt functionIsType equalityTransitivity equalitySymmetry applyLambdaEquality functionExtensionality setIsType productElimination imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
FreeGp  -|  ForgetGroup



Date html generated: 2019_10_31-AM-07_25_15
Last ObjectModification: 2018_11_08-PM-06_01_02

Theory : small!categories


Home Index