Nuprl Lemma : fg-lift_wf

[X:Type]
  ∀G:Group{i}. ∀f:X ⟶ |G|.  (fg-lift(G;f) ∈ {F:MonHom(free-group(X),G)| ∀x:X. ((F free-letter(x)) (f x) ∈ |G|)} )


Proof




Definitions occuring in Statement :  fg-lift: fg-lift(G;f) free-letter: free-letter(x) free-group: free-group(X) uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_hom: MonHom(M1,M2) grp: Group{i} grp_car: |g|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] grp: Group{i} mon: Mon fg-lift: fg-lift(G;f) monoid_hom: MonHom(M1,M2) free-group: free-group(X) grp_car: |g| pi1: fst(t) subtype_rel: A ⊆B uimplies: supposing a grp_op: * pi2: snd(t) infix_ap: y prop: free-word: free-word(X) implies:  Q cand: c∧ B quotient: x,y:A//B[x; y] and: P ∧ Q squash: T true: True guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q free-append: w' free-letter: free-letter(x) fg-hom: fg-hom(G;f;w) top: Top imon: IMonoid so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  grp_car_wf grp_wf fg-hom_wf free-group_wf grp_hom_formation grp_subtype_igrp monoid_hom_p_wf word-equiv-equiv list_wf word-equiv_wf equal-wf-base equal_wf squash_wf true_wf free-append_wf subtype_quotient fg-hom-append iff_weakening_equal free-word_wf quotient-member-eq list_accum_cons_lemma list_accum_nil_lemma mon_ident grp_sig_wf monoid_p_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf all_wf free-letter_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation dependent_set_memberEquality sqequalHypSubstitution hypothesis functionEquality cumulativity hypothesisEquality extract_by_obid isectElimination thin setElimination rename sqequalRule lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality functionExtensionality applyEquality independent_isectElimination unionEquality promote_hyp independent_pairFormation pointwiseFunctionality pertypeElimination productElimination independent_functionElimination productEquality imageElimination natural_numberEquality imageMemberEquality baseClosed isect_memberEquality voidElimination voidEquality setEquality

Latex:
\mforall{}[X:Type]
    \mforall{}G:Group\{i\}.  \mforall{}f:X  {}\mrightarrow{}  |G|.
        (fg-lift(G;f)  \mmember{}  \{F:MonHom(free-group(X),G)|  \mforall{}x:X.  ((F  free-letter(x))  =  (f  x))\}  )



Date html generated: 2017_10_05-AM-00_45_30
Last ObjectModification: 2017_07_28-AM-09_18_54

Theory : free!groups


Home Index