Nuprl Lemma : fg-lift_wf
∀[X:Type]
  ∀G:Group{i}. ∀f:X ⟶ |G|.  (fg-lift(G;f) ∈ {F:MonHom(free-group(X),G)| ∀x:X. ((F free-letter(x)) = (f x) ∈ |G|)} )
Proof
Definitions occuring in Statement : 
fg-lift: fg-lift(G;f)
, 
free-letter: free-letter(x)
, 
free-group: free-group(X)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
monoid_hom: MonHom(M1,M2)
, 
grp: Group{i}
, 
grp_car: |g|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
grp: Group{i}
, 
mon: Mon
, 
fg-lift: fg-lift(G;f)
, 
monoid_hom: MonHom(M1,M2)
, 
free-group: free-group(X)
, 
grp_car: |g|
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
grp_op: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
prop: ℙ
, 
free-word: free-word(X)
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
free-append: w + w'
, 
free-letter: free-letter(x)
, 
fg-hom: fg-hom(G;f;w)
, 
top: Top
, 
imon: IMonoid
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
grp_car_wf, 
grp_wf, 
fg-hom_wf, 
free-group_wf, 
grp_hom_formation, 
grp_subtype_igrp, 
monoid_hom_p_wf, 
word-equiv-equiv, 
list_wf, 
word-equiv_wf, 
equal-wf-base, 
equal_wf, 
squash_wf, 
true_wf, 
free-append_wf, 
subtype_quotient, 
fg-hom-append, 
iff_weakening_equal, 
free-word_wf, 
quotient-member-eq, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
mon_ident, 
grp_sig_wf, 
monoid_p_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
all_wf, 
free-letter_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
dependent_set_memberEquality, 
sqequalHypSubstitution, 
hypothesis, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality, 
functionExtensionality, 
applyEquality, 
independent_isectElimination, 
unionEquality, 
promote_hyp, 
independent_pairFormation, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
independent_functionElimination, 
productEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setEquality
Latex:
\mforall{}[X:Type]
    \mforall{}G:Group\{i\}.  \mforall{}f:X  {}\mrightarrow{}  |G|.
        (fg-lift(G;f)  \mmember{}  \{F:MonHom(free-group(X),G)|  \mforall{}x:X.  ((F  free-letter(x))  =  (f  x))\}  )
Date html generated:
2017_10_05-AM-00_45_30
Last ObjectModification:
2017_07_28-AM-09_18_54
Theory : free!groups
Home
Index