Nuprl Lemma : fg-hom-append
∀[X:Type]. ∀[G:Group{i}]. ∀[f:X ⟶ |G|]. ∀[a,b:(X + X) List].
  (fg-hom(G;f;a @ b) = (fg-hom(G;f;a) * fg-hom(G;f;b)) ∈ |G|)
Proof
Definitions occuring in Statement : 
fg-hom: fg-hom(G;f;w)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
, 
grp: Group{i}
, 
grp_op: *
, 
grp_car: |g|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fg-hom: fg-hom(G;f;w)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
grp: Group{i}
, 
mon: Mon
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
imon: IMonoid
, 
and: P ∧ Q
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_accum_append, 
subtype_rel_list, 
top_wf, 
list_accum_wf, 
grp_car_wf, 
grp_id_wf, 
grp_op_wf, 
grp_inv_wf, 
equal_wf, 
list_wf, 
grp_wf, 
list_induction, 
all_wf, 
list_accum_nil_lemma, 
mon_ident, 
grp_sig_wf, 
monoid_p_wf, 
inverse_wf, 
list_accum_cons_lemma, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
mon_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
unionEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
universeEquality, 
setEquality, 
cumulativity, 
productElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate
Latex:
\mforall{}[X:Type].  \mforall{}[G:Group\{i\}].  \mforall{}[f:X  {}\mrightarrow{}  |G|].  \mforall{}[a,b:(X  +  X)  List].
    (fg-hom(G;f;a  @  b)  =  (fg-hom(G;f;a)  *  fg-hom(G;f;b)))
Date html generated:
2019_10_31-AM-07_23_49
Last ObjectModification:
2018_08_21-PM-02_02_33
Theory : free!groups
Home
Index