Nuprl Lemma : fg-hom-append

[X:Type]. ∀[G:Group{i}]. ∀[f:X ⟶ |G|]. ∀[a,b:(X X) List].
  (fg-hom(G;f;a b) (fg-hom(G;f;a) fg-hom(G;f;b)) ∈ |G|)


Proof




Definitions occuring in Statement :  fg-hom: fg-hom(G;f;w) append: as bs list: List uall: [x:A]. B[x] infix_ap: y function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T grp: Group{i} grp_op: * grp_car: |g|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fg-hom: fg-hom(G;f;w) subtype_rel: A ⊆B uimplies: supposing a top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] grp: Group{i} mon: Mon infix_ap: y all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] imon: IMonoid and: P ∧ Q squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_accum_append subtype_rel_list top_wf list_accum_wf grp_car_wf grp_id_wf grp_op_wf grp_inv_wf equal_wf list_wf grp_wf list_induction all_wf list_accum_nil_lemma mon_ident grp_sig_wf monoid_p_wf inverse_wf list_accum_cons_lemma squash_wf true_wf subtype_rel_self iff_weakening_equal mon_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality unionEquality hypothesis independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache setElimination rename equalityTransitivity equalitySymmetry lambdaFormation unionElimination dependent_functionElimination independent_functionElimination axiomEquality functionEquality universeEquality setEquality cumulativity productElimination imageElimination natural_numberEquality imageMemberEquality baseClosed instantiate

Latex:
\mforall{}[X:Type].  \mforall{}[G:Group\{i\}].  \mforall{}[f:X  {}\mrightarrow{}  |G|].  \mforall{}[a,b:(X  +  X)  List].
    (fg-hom(G;f;a  @  b)  =  (fg-hom(G;f;a)  *  fg-hom(G;f;b)))



Date html generated: 2019_10_31-AM-07_23_49
Last ObjectModification: 2018_08_21-PM-02_02_33

Theory : free!groups


Home Index