Nuprl Lemma : free-group_wf
∀[X:Type]. (free-group(X) ∈ Group{i})
Proof
Definitions occuring in Statement : 
free-group: free-group(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
grp: Group{i}
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
free-group: free-group(X)
, 
member: t ∈ T
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
ident: Ident(T;op;id)
, 
cand: A c∧ B
, 
inverse: Inverse(T;op;id;inv)
Lemmas referenced : 
free-word_wf, 
btrue_wf, 
free-append_wf, 
free-0_wf, 
free-word-inv_wf, 
equal_wf, 
squash_wf, 
true_wf, 
free-append-assoc, 
iff_weakening_equal, 
free-append-0, 
free-0-append, 
free-word-inv-append2, 
free-word-inv-append1, 
mk_grp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
universeEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
independent_pairEquality
Latex:
\mforall{}[X:Type].  (free-group(X)  \mmember{}  Group\{i\})
Date html generated:
2017_10_05-AM-00_45_02
Last ObjectModification:
2017_07_28-AM-09_18_48
Theory : free!groups
Home
Index