Nuprl Lemma : free-group_wf

[X:Type]. (free-group(X) ∈ Group{i})


Proof




Definitions occuring in Statement :  free-group: free-group(X) uall: [x:A]. B[x] member: t ∈ T universe: Type grp: Group{i}
Definitions unfolded in proof :  uall: [x:A]. B[x] free-group: free-group(X) member: t ∈ T assoc: Assoc(T;op) infix_ap: y squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q ident: Ident(T;op;id) cand: c∧ B inverse: Inverse(T;op;id;inv)
Lemmas referenced :  free-word_wf btrue_wf free-append_wf free-0_wf free-word-inv_wf equal_wf squash_wf true_wf free-append-assoc iff_weakening_equal free-append-0 free-0-append free-word-inv-append2 free-word-inv-append1 mk_grp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation universeEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality sqequalRule applyEquality imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination isect_memberEquality axiomEquality independent_pairFormation independent_pairEquality

Latex:
\mforall{}[X:Type].  (free-group(X)  \mmember{}  Group\{i\})



Date html generated: 2017_10_05-AM-00_45_02
Last ObjectModification: 2017_07_28-AM-09_18_48

Theory : free!groups


Home Index