Nuprl Lemma : free-append_wf

[X:Type]. ∀[w,w':free-word(X)].  (w w' ∈ free-word(X))


Proof




Definitions occuring in Statement :  free-append: w' free-word: free-word(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-word: free-word(X) all: x:A. B[x] prop: implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a cand: c∧ B quotient: x,y:A//B[x; y] and: P ∧ Q squash: T true: True guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) subtype_rel: A ⊆B free-append: w' word-equiv: word-equiv(X;w1;w2) exists: x:A. B[x] infix_ap: y
Lemmas referenced :  free-word_wf list_wf word-equiv_wf quotient_wf word-equiv-equiv equal-wf-base member_wf squash_wf true_wf equal_wf quotient-member-eq append_wf transitive-reflexive-closure_wf word-rel_wf transitive-reflexive-closure-map word-rel-append1 word-rel-append2 transitive-reflexive-closure_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin cumulativity hypothesisEquality isect_memberEquality because_Cache universeEquality unionEquality promote_hyp lambdaFormation lambdaEquality dependent_functionElimination independent_isectElimination independent_pairFormation pointwiseFunctionality pertypeElimination productElimination independent_functionElimination productEquality applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed dependent_pairFormation

Latex:
\mforall{}[X:Type].  \mforall{}[w,w':free-word(X)].    (w  +  w'  \mmember{}  free-word(X))



Date html generated: 2017_10_05-AM-00_44_46
Last ObjectModification: 2017_07_28-AM-09_18_40

Theory : free!groups


Home Index