Nuprl Lemma : free-append_wf
∀[X:Type]. ∀[w,w':free-word(X)].  (w + w' ∈ free-word(X))
Proof
Definitions occuring in Statement : 
free-append: w + w'
, 
free-word: free-word(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-word: free-word(X)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
subtype_rel: A ⊆r B
, 
free-append: w + w'
, 
word-equiv: word-equiv(X;w1;w2)
, 
exists: ∃x:A. B[x]
, 
infix_ap: x f y
Lemmas referenced : 
free-word_wf, 
list_wf, 
word-equiv_wf, 
quotient_wf, 
word-equiv-equiv, 
equal-wf-base, 
member_wf, 
squash_wf, 
true_wf, 
equal_wf, 
quotient-member-eq, 
append_wf, 
transitive-reflexive-closure_wf, 
word-rel_wf, 
transitive-reflexive-closure-map, 
word-rel-append1, 
word-rel-append2, 
transitive-reflexive-closure_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
unionEquality, 
promote_hyp, 
lambdaFormation, 
lambdaEquality, 
dependent_functionElimination, 
independent_isectElimination, 
independent_pairFormation, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
independent_functionElimination, 
productEquality, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation
Latex:
\mforall{}[X:Type].  \mforall{}[w,w':free-word(X)].    (w  +  w'  \mmember{}  free-word(X))
Date html generated:
2017_10_05-AM-00_44_46
Last ObjectModification:
2017_07_28-AM-09_18_40
Theory : free!groups
Home
Index