Nuprl Lemma : transitive-reflexive-closure-map
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].
  ∀f:A ⟶ A. ((∀x,y:A.  ((R x y) 
⇒ (R (f x) (f y)))) 
⇒ (∀x,y:A.  ((R^* x y) 
⇒ (R^* (f x) (f y)))))
Proof
Definitions occuring in Statement : 
transitive-reflexive-closure: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
transitive-reflexive-closure: R^*
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
and_wf, 
equal_wf, 
transitive-closure_wf, 
transitive-reflexive-closure_wf, 
all_wf, 
transitive-closure-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
unionElimination, 
thin, 
inlFormation, 
cut, 
equalitySymmetry, 
dependent_set_memberEquality, 
hypothesis, 
independent_pairFormation, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
applyEquality, 
cumulativity, 
functionExtensionality, 
inrFormation, 
lambdaEquality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:A  {}\mrightarrow{}  A
        ((\mforall{}x,y:A.    ((R  x  y)  {}\mRightarrow{}  (R  (f  x)  (f  y))))  {}\mRightarrow{}  (\mforall{}x,y:A.    ((R\^{}*  x  y)  {}\mRightarrow{}  (R\^{}*  (f  x)  (f  y)))))
Date html generated:
2017_01_19-PM-02_17_49
Last ObjectModification:
2017_01_14-PM-06_52_49
Theory : relations2
Home
Index