Nuprl Lemma : transitive-reflexive-closure-map

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].
  ∀f:A ⟶ A. ((∀x,y:A.  ((R y)  (R (f x) (f y))))  (∀x,y:A.  ((R^* y)  (R^* (f x) (f y)))))


Proof




Definitions occuring in Statement :  transitive-reflexive-closure: R^* uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q transitive-reflexive-closure: R^* or: P ∨ Q and: P ∧ Q member: t ∈ T prop: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  and_wf equal_wf transitive-closure_wf transitive-reflexive-closure_wf all_wf transitive-closure-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule unionElimination thin inlFormation cut equalitySymmetry dependent_set_memberEquality hypothesis independent_pairFormation hypothesisEquality introduction extract_by_obid isectElimination applyLambdaEquality setElimination rename productElimination applyEquality cumulativity functionExtensionality inrFormation lambdaEquality functionEquality universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:A  {}\mrightarrow{}  A
        ((\mforall{}x,y:A.    ((R  x  y)  {}\mRightarrow{}  (R  (f  x)  (f  y))))  {}\mRightarrow{}  (\mforall{}x,y:A.    ((R\^{}*  x  y)  {}\mRightarrow{}  (R\^{}*  (f  x)  (f  y)))))



Date html generated: 2017_01_19-PM-02_17_49
Last ObjectModification: 2017_01_14-PM-06_52_49

Theory : relations2


Home Index