Nuprl Lemma : transitive-closure-map

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].
  ∀f:A ⟶ A. ((∀x,y:A.  ((R y)  (R (f x) (f y))))  (∀x,y:A.  ((TC(R) y)  (TC(R) (f x) (f y)))))


Proof




Definitions occuring in Statement :  transitive-closure: TC(R) uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q transitive-closure: TC(R) member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B spreadn: spread3 cand: c∧ B squash: T label: ...$L... t top: Top uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q pi1: fst(t) pi2: snd(t) rel_path: rel_path(A;L;x;y) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  transitive-closure_wf all_wf map_wf less_than_wf squash_wf true_wf equal_wf length-map-sq subtype_rel_list top_wf length_wf iff_weakening_equal rel_path_wf list_induction list_wf list_ind_nil_lemma map_nil_lemma list_ind_cons_lemma map_cons_lemma and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename sqequalHypSubstitution sqequalRule applyEquality cut introduction extract_by_obid isectElimination thin cumulativity hypothesisEquality functionExtensionality hypothesis lambdaEquality functionEquality universeEquality setElimination dependent_set_memberEquality productElimination productEquality because_Cache dependent_pairEquality independent_pairFormation imageElimination equalityTransitivity equalitySymmetry intEquality natural_numberEquality isect_memberEquality voidElimination voidEquality independent_isectElimination imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:A  {}\mrightarrow{}  A
        ((\mforall{}x,y:A.    ((R  x  y)  {}\mRightarrow{}  (R  (f  x)  (f  y))))  {}\mRightarrow{}  (\mforall{}x,y:A.    ((TC(R)  x  y)  {}\mRightarrow{}  (TC(R)  (f  x)  (f  y)))))



Date html generated: 2017_04_17-AM-09_25_42
Last ObjectModification: 2017_02_27-PM-05_26_24

Theory : relations2


Home Index