Nuprl Lemma : transitive-closure-map
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].
  ∀f:A ⟶ A. ((∀x,y:A.  ((R x y) 
⇒ (R (f x) (f y)))) 
⇒ (∀x,y:A.  ((TC(R) x y) 
⇒ (TC(R) (f x) (f y)))))
Proof
Definitions occuring in Statement : 
transitive-closure: TC(R)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
transitive-closure: TC(R)
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
spreadn: spread3, 
cand: A c∧ B
, 
squash: ↓T
, 
label: ...$L... t
, 
top: Top
, 
uimplies: b supposing a
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
rel_path: rel_path(A;L;x;y)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
transitive-closure_wf, 
all_wf, 
map_wf, 
less_than_wf, 
squash_wf, 
true_wf, 
equal_wf, 
length-map-sq, 
subtype_rel_list, 
top_wf, 
length_wf, 
iff_weakening_equal, 
rel_path_wf, 
list_induction, 
list_wf, 
list_ind_nil_lemma, 
map_nil_lemma, 
list_ind_cons_lemma, 
map_cons_lemma, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
rename, 
sqequalHypSubstitution, 
sqequalRule, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
universeEquality, 
setElimination, 
dependent_set_memberEquality, 
productElimination, 
productEquality, 
because_Cache, 
dependent_pairEquality, 
independent_pairFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
natural_numberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
dependent_functionElimination, 
applyLambdaEquality
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:A  {}\mrightarrow{}  A
        ((\mforall{}x,y:A.    ((R  x  y)  {}\mRightarrow{}  (R  (f  x)  (f  y))))  {}\mRightarrow{}  (\mforall{}x,y:A.    ((TC(R)  x  y)  {}\mRightarrow{}  (TC(R)  (f  x)  (f  y)))))
Date html generated:
2017_04_17-AM-09_25_42
Last ObjectModification:
2017_02_27-PM-05_26_24
Theory : relations2
Home
Index