Nuprl Lemma : word-equiv-equiv
∀[X:Type]. EquivRel((X + X) List;w1,w2.word-equiv(X;w1;w2))
Proof
Definitions occuring in Statement : 
word-equiv: word-equiv(X;w1;w2)
, 
list: T List
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
word-equiv: word-equiv(X;w1;w2)
, 
exists: ∃x:A. B[x]
, 
transitive-reflexive-closure: R^*
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
infix_ap: x f y
Lemmas referenced : 
list_wf, 
word-equiv_wf, 
transitive-closure_wf, 
word-rel_wf, 
transitive-reflexive-closure_wf, 
word-rel-confluent, 
transitive-reflexive-closure_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
universeEquality, 
dependent_pairFormation, 
sqequalRule, 
inlFormation, 
applyEquality, 
lambdaEquality, 
productEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
promote_hyp
Latex:
\mforall{}[X:Type].  EquivRel((X  +  X)  List;w1,w2.word-equiv(X;w1;w2))
Date html generated:
2017_01_19-PM-02_49_57
Last ObjectModification:
2017_01_14-PM-05_15_36
Theory : free!groups
Home
Index