Nuprl Lemma : word-equiv-equiv

[X:Type]. EquivRel((X X) List;w1,w2.word-equiv(X;w1;w2))


Proof




Definitions occuring in Statement :  word-equiv: word-equiv(X;w1;w2) list: List equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] member: t ∈ T cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q prop: trans: Trans(T;x,y.E[x; y]) word-equiv: word-equiv(X;w1;w2) exists: x:A. B[x] transitive-reflexive-closure: R^* or: P ∨ Q subtype_rel: A ⊆B infix_ap: y
Lemmas referenced :  list_wf word-equiv_wf transitive-closure_wf word-rel_wf transitive-reflexive-closure_wf word-rel-confluent transitive-reflexive-closure_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality hypothesis because_Cache universeEquality dependent_pairFormation sqequalRule inlFormation applyEquality lambdaEquality productEquality productElimination dependent_functionElimination independent_functionElimination promote_hyp

Latex:
\mforall{}[X:Type].  EquivRel((X  +  X)  List;w1,w2.word-equiv(X;w1;w2))



Date html generated: 2017_01_19-PM-02_49_57
Last ObjectModification: 2017_01_14-PM-05_15_36

Theory : free!groups


Home Index