Nuprl Lemma : word-rel-confluent

[X:Type]
  ∀b,w1,w:(X X) List.
    ((λx,y. word-rel(X;x;y)^* w1)
     x,y. word-rel(X;x;y)^* w)
     (∃z:(X X) List. ((λx,y. word-rel(X;x;y)^* w1 z) ∧ x,y. word-rel(X;x;y)^* z))))


Proof




Definitions occuring in Statement :  word-rel: word-rel(X;w1;w2) transitive-reflexive-closure: R^* list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a lambda: λx.A[x] union: left right universe: Type
Definitions unfolded in proof :  rel-confluent: rel-confluent(T;x,y.R[x; y]) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q rel-diamond-property: rel-diamond-property(T;x,y.R[x; y]) exists: x:A. B[x] all: x:A. B[x] prop: subtype_rel: A ⊆B nat: uimplies: supposing a
Lemmas referenced :  diamond-implies-TC-confluent list_wf word-rel_wf istype-universe word-rel-diamond length_wf_nat istype-less_than istype-nat word-rel-length
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality hypothesis lambdaEquality_alt inhabitedIsType universeIsType independent_functionElimination instantiate universeEquality dependent_pairFormation_alt lambdaFormation_alt functionIsType because_Cache applyEquality setElimination rename independent_isectElimination

Latex:
\mforall{}[X:Type]
    \mforall{}b,w1,w:(X  +  X)  List.
        ((\mlambda{}x,y.  word-rel(X;x;y)\^{}*  b  w1)
        {}\mRightarrow{}  (\mlambda{}x,y.  word-rel(X;x;y)\^{}*  b  w)
        {}\mRightarrow{}  (\mexists{}z:(X  +  X)  List.  ((\mlambda{}x,y.  word-rel(X;x;y)\^{}*  w1  z)  \mwedge{}  (\mlambda{}x,y.  word-rel(X;x;y)\^{}*  w  z))))



Date html generated: 2019_10_31-AM-07_23_21
Last ObjectModification: 2019_08_16-PM-03_31_50

Theory : free!groups


Home Index