Nuprl Lemma : word-rel-confluent
∀[X:Type]
  ∀b,w1,w:(X + X) List.
    ((λx,y. word-rel(X;x;y)^* b w1)
    
⇒ (λx,y. word-rel(X;x;y)^* b w)
    
⇒ (∃z:(X + X) List. ((λx,y. word-rel(X;x;y)^* w1 z) ∧ (λx,y. word-rel(X;x;y)^* w z))))
Proof
Definitions occuring in Statement : 
word-rel: word-rel(X;w1;w2)
, 
transitive-reflexive-closure: R^*
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
rel-confluent: rel-confluent(T;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
rel-diamond-property: rel-diamond-property(T;x,y.R[x; y])
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
Lemmas referenced : 
diamond-implies-TC-confluent, 
list_wf, 
word-rel_wf, 
istype-universe, 
word-rel-diamond, 
length_wf_nat, 
istype-less_than, 
istype-nat, 
word-rel-length
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
inhabitedIsType, 
universeIsType, 
independent_functionElimination, 
instantiate, 
universeEquality, 
dependent_pairFormation_alt, 
lambdaFormation_alt, 
functionIsType, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
independent_isectElimination
Latex:
\mforall{}[X:Type]
    \mforall{}b,w1,w:(X  +  X)  List.
        ((\mlambda{}x,y.  word-rel(X;x;y)\^{}*  b  w1)
        {}\mRightarrow{}  (\mlambda{}x,y.  word-rel(X;x;y)\^{}*  b  w)
        {}\mRightarrow{}  (\mexists{}z:(X  +  X)  List.  ((\mlambda{}x,y.  word-rel(X;x;y)\^{}*  w1  z)  \mwedge{}  (\mlambda{}x,y.  word-rel(X;x;y)\^{}*  w  z))))
Date html generated:
2019_10_31-AM-07_23_21
Last ObjectModification:
2019_08_16-PM-03_31_50
Theory : free!groups
Home
Index