Nuprl Lemma : word-rel-length
∀[X:Type]. ∀[w1,w2:(X + X) List].  ||w2|| < ||w1|| supposing word-rel(X;w1;w2)
Proof
Definitions occuring in Statement : 
word-rel: word-rel(X;w1;w2)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
word-rel: word-rel(X;w1;w2)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
true: True
, 
top: Top
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
word-rel_wf, 
member-less_than, 
length_wf, 
list_wf, 
length-append, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
less_than_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
unionEquality, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
addEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[X:Type].  \mforall{}[w1,w2:(X  +  X)  List].    ||w2||  <  ||w1||  supposing  word-rel(X;w1;w2)
Date html generated:
2017_01_19-PM-02_49_19
Last ObjectModification:
2017_01_14-PM-04_46_23
Theory : free!groups
Home
Index