Nuprl Lemma : word-rel_wf

[X:Type]. ∀[w1,w2:(X X) List].  (word-rel(X;w1;w2) ∈ ℙ)


Proof




Definitions occuring in Statement :  word-rel: word-rel(X;w1;w2) list: List uall: [x:A]. B[x] prop: member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T word-rel: word-rel(X;w1;w2) append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  list_ind_cons_lemma list_ind_nil_lemma exists_wf list_wf inverse-letters_wf equal_wf append_wf cons_wf length_wf length-append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination unionEquality cumulativity hypothesisEquality because_Cache lambdaEquality productEquality applyLambdaEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[w1,w2:(X  +  X)  List].    (word-rel(X;w1;w2)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_44_20
Last ObjectModification: 2017_07_28-AM-09_18_34

Theory : free!groups


Home Index