Nuprl Lemma : word-rel_wf
∀[X:Type]. ∀[w1,w2:(X + X) List].  (word-rel(X;w1;w2) ∈ ℙ)
Proof
Definitions occuring in Statement : 
word-rel: word-rel(X;w1;w2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
word-rel: word-rel(X;w1;w2)
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
exists_wf, 
list_wf, 
inverse-letters_wf, 
equal_wf, 
append_wf, 
cons_wf, 
length_wf, 
length-append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
productEquality, 
applyLambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[w1,w2:(X  +  X)  List].    (word-rel(X;w1;w2)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_05-AM-00_44_20
Last ObjectModification:
2017_07_28-AM-09_18_34
Theory : free!groups
Home
Index