Nuprl Lemma : inverse-letters_wf

[X:Type]. ∀[a,b:X X].  (a -b ∈ ℙ)


Proof




Definitions occuring in Statement :  inverse-letters: -b uall: [x:A]. B[x] prop: member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T inverse-letters: -b so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  exists_wf or_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality productEquality unionEquality because_Cache inlEquality hypothesis inrEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[a,b:X  +  X].    (a  =  -b  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_44_18
Last ObjectModification: 2017_07_28-AM-09_18_34

Theory : free!groups


Home Index