Nuprl Lemma : inverse-letters_wf
∀[X:Type]. ∀[a,b:X + X].  (a = -b ∈ ℙ)
Proof
Definitions occuring in Statement : 
inverse-letters: a = -b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
inverse-letters: a = -b
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
or_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
unionEquality, 
because_Cache, 
inlEquality, 
hypothesis, 
inrEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[a,b:X  +  X].    (a  =  -b  \mmember{}  \mBbbP{})
Date html generated:
2017_10_05-AM-00_44_18
Last ObjectModification:
2017_07_28-AM-09_18_34
Theory : free!groups
Home
Index