Nuprl Lemma : diamond-implies-TC-confluent
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (rel-diamond-property(T;x,y.R[x;y])
  
⇒ (∃m:T ⟶ ℕ. ∀x,y:T.  (R[x;y] 
⇒ m y < m x))
  
⇒ rel-confluent(T;x,y.λx,y. R[x;y]^* x y))
Proof
Definitions occuring in Statement : 
rel-confluent: rel-confluent(T;x,y.R[x; y])
, 
rel-diamond-property: rel-diamond-property(T;x,y.R[x; y])
, 
transitive-reflexive-closure: R^*
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
rel-confluent: rel-confluent(T;x,y.R[x; y])
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x y.t[x; y]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
infix_ap: x f y
, 
cand: A c∧ B
, 
transitive-reflexive-closure: R^*
, 
rel-diamond-property: rel-diamond-property(T;x,y.R[x; y])
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
istype-nat, 
subtype_rel_self, 
istype-less_than, 
rel-diamond-property_wf, 
istype-universe, 
transitive-reflexive-closure_wf, 
subtract_wf, 
istype-int, 
primrec-wf2, 
less_than_wf, 
add_nat_wf, 
istype-void, 
istype-le, 
nat_properties, 
decidable__le, 
add-is-int-iff, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
transitive-reflexive-closure-cases, 
transitive-closure_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
transitive-reflexive-closure-base-case, 
transitive-reflexive-closure_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
applyEquality, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
productElimination, 
natural_numberEquality, 
setIsType, 
functionEquality, 
productEquality, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
addEquality, 
independent_pairFormation, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
intEquality, 
independent_isectElimination, 
baseClosed, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
equalityIstype, 
hyp_replacement, 
inlFormation_alt, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (rel-diamond-property(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mexists{}m:T  {}\mrightarrow{}  \mBbbN{}.  \mforall{}x,y:T.    (R[x;y]  {}\mRightarrow{}  m  y  <  m  x))
    {}\mRightarrow{}  rel-confluent(T;x,y.\mlambda{}x,y.  R[x;y]\^{}*  x  y))
Date html generated:
2019_10_15-AM-10_24_43
Last ObjectModification:
2019_08_16-PM-03_15_24
Theory : relations2
Home
Index