Nuprl Lemma : transitive-reflexive-closure-cases

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  ∀x,y:A.  ((x R^* y)  ((x y ∈ A) ∨ (∃z:A. ((x z) ∧ (z R^* y)))))


Proof




Definitions occuring in Statement :  transitive-reflexive-closure: R^* uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q transitive-reflexive-closure: R^* infix_ap: y or: P ∨ Q member: t ∈ T prop: so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] guard: {T} exists: x:A. B[x] cand: c∧ B
Lemmas referenced :  exists_wf transitive-reflexive-closure_wf transitive-closure-cases equal_wf transitive-closure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule unionElimination thin inlFormation hypothesis cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality productEquality applyEquality functionExtensionality universeEquality because_Cache inrFormation dependent_functionElimination independent_functionElimination functionEquality dependent_pairFormation independent_pairFormation productElimination promote_hyp

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:A.    ((x  R\^{}*  y)  {}\mRightarrow{}  ((x  =  y)  \mvee{}  (\mexists{}z:A.  ((x  R  z)  \mwedge{}  (z  R\^{}*  y)))))



Date html generated: 2017_01_19-PM-02_17_41
Last ObjectModification: 2017_01_14-PM-04_28_39

Theory : relations2


Home Index