Nuprl Lemma : transitive-reflexive-closure-cases
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  ∀x,y:A.  ((x R^* y) 
⇒ ((x = y ∈ A) ∨ (∃z:A. ((x R z) ∧ (z R^* y)))))
Proof
Definitions occuring in Statement : 
transitive-reflexive-closure: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
transitive-reflexive-closure: R^*
, 
infix_ap: x f y
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
exists_wf, 
transitive-reflexive-closure_wf, 
transitive-closure-cases, 
equal_wf, 
transitive-closure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
unionElimination, 
thin, 
inlFormation, 
hypothesis, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
because_Cache, 
inrFormation, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
dependent_pairFormation, 
independent_pairFormation, 
productElimination, 
promote_hyp
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:A.    ((x  R\^{}*  y)  {}\mRightarrow{}  ((x  =  y)  \mvee{}  (\mexists{}z:A.  ((x  R  z)  \mwedge{}  (z  R\^{}*  y)))))
Date html generated:
2017_01_19-PM-02_17_41
Last ObjectModification:
2017_01_14-PM-04_28_39
Theory : relations2
Home
Index