Nuprl Lemma : transitive-closure-cases
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  ∀x,y:A.  ((x TC(R) y) 
⇒ ((x R y) ∨ (∃z:A. ((x R z) ∧ (z TC(R) y)))))
Proof
Definitions occuring in Statement : 
transitive-closure: TC(R)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
transitive-closure: TC(R)
, 
infix_ap: x f y
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
cons: [a / b]
, 
false: False
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
length: ||as||
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rel_path: rel_path(A;L;x;y)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
Lemmas referenced : 
list-cases, 
product_subtype_list, 
transitive-closure_wf, 
exists_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
equal_wf, 
cons_wf, 
non_neg_length, 
decidable__lt, 
length_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
rel_path_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
rename, 
setElimination, 
thin, 
cut, 
productEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
universeEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
cumulativity, 
functionExtensionality, 
functionEquality, 
imageElimination, 
voidElimination, 
inlFormation, 
because_Cache, 
isect_memberEquality, 
voidEquality, 
hyp_replacement, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
instantiate, 
inrFormation, 
dependent_pairFormation, 
independent_pairFormation, 
dependent_set_memberEquality, 
dependent_pairEquality, 
natural_numberEquality, 
addEquality, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:A.    ((x  TC(R)  y)  {}\mRightarrow{}  ((x  R  y)  \mvee{}  (\mexists{}z:A.  ((x  R  z)  \mwedge{}  (z  TC(R)  y)))))
Date html generated:
2017_04_17-AM-09_25_49
Last ObjectModification:
2017_02_27-PM-05_26_27
Theory : relations2
Home
Index