Nuprl Lemma : transitive-closure-cases

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  ∀x,y:A.  ((x TC(R) y)  ((x y) ∨ (∃z:A. ((x z) ∧ (z TC(R) y)))))


Proof




Definitions occuring in Statement :  transitive-closure: TC(R) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q transitive-closure: TC(R) infix_ap: y member: t ∈ T prop: subtype_rel: A ⊆B or: P ∨ Q cons: [a b] false: False and: P ∧ Q less_than: a < b squash: T less_than': less_than'(a;b) length: ||as|| list_ind: list_ind nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] rel_path: rel_path(A;L;x;y) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] pi1: fst(t) pi2: snd(t) guard: {T} exists: x:A. B[x] cand: c∧ B ge: i ≥  decidable: Dec(P) le: A ≤ B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A
Lemmas referenced :  list-cases product_subtype_list transitive-closure_wf exists_wf list_ind_cons_lemma list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma equal_wf cons_wf non_neg_length decidable__lt length_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf rel_path_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule rename setElimination thin cut productEquality hypothesisEquality applyEquality hypothesis lambdaEquality universeEquality introduction extract_by_obid isectElimination dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination cumulativity functionExtensionality functionEquality imageElimination voidElimination inlFormation because_Cache isect_memberEquality voidEquality hyp_replacement equalityTransitivity equalitySymmetry applyLambdaEquality instantiate inrFormation dependent_pairFormation independent_pairFormation dependent_set_memberEquality dependent_pairEquality natural_numberEquality addEquality independent_isectElimination int_eqEquality intEquality computeAll

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:A.    ((x  TC(R)  y)  {}\mRightarrow{}  ((x  R  y)  \mvee{}  (\mexists{}z:A.  ((x  R  z)  \mwedge{}  (z  TC(R)  y)))))



Date html generated: 2017_04_17-AM-09_25_49
Last ObjectModification: 2017_02_27-PM-05_26_27

Theory : relations2


Home Index