Step
*
of Lemma
transitive-closure-cases
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ]. ∀x,y:A. ((x TC(R) y)
⇒ ((x R y) ∨ (∃z:A. ((x R z) ∧ (z TC(R) y)))))
BY
{ (Auto THEN RepUR ``transitive-closure`` -1 THEN RenameVar `L' (-1) THEN D -1 THEN D -2) }
1
1. [A] : Type
2. [R] : A ⟶ A ⟶ ℙ
3. x : A
4. y : A
5. [%1] : rel_path(A;[];x;y) ∧ 0 < ||[]||
⊢ (x R y) ∨ (∃z:A. ((x R z) ∧ (z TC(R) y)))
2
1. [A] : Type
2. [R] : A ⟶ A ⟶ ℙ
3. x : A
4. y : A
5. u : a:A × b:A × (R a b)
6. v : (a:A × b:A × (R a b)) List
7. [%1] : rel_path(A;[u / v];x;y) ∧ 0 < ||[u / v]||
⊢ (x R y) ∨ (∃z:A. ((x R z) ∧ (z TC(R) y)))
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[R:A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}]. \mforall{}x,y:A. ((x TC(R) y) {}\mRightarrow{} ((x R y) \mvee{} (\mexists{}z:A. ((x R z) \mwedge{} (z TC(R) y)))))
By
Latex:
(Auto THEN RepUR ``transitive-closure`` -1 THEN RenameVar `L' (-1) THEN D -1 THEN D -2)
Home
Index