Nuprl Lemma : word-rel-diamond

[X:Type]
  ∀x,y,z:(X X) List.
    (word-rel(X;x;y)
     word-rel(X;x;z)
     ((y z ∈ ((X X) List)) ∨ (∃w:(X X) List. (word-rel(X;y;w) ∧ word-rel(X;z;w)))))


Proof




Definitions occuring in Statement :  word-rel: word-rel(X;w1;w2) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥  less_than: a < b squash: T word-rel: word-rel(X;w1;w2) so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] uiff: uiff(P;Q) cons: [a b] true: True cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf int_seg_subtype false_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf length_wf non_neg_length nat_properties decidable__lt lelt_wf less_than_wf word-rel_wf all_wf list_wf or_wf equal_wf exists_wf set_wf primrec-wf2 nat_wf itermAdd_wf int_term_value_add_lemma length_wf_nat append_wf list-cases list_ind_nil_lemma list_ind_cons_lemma cons_one_one cons_wf product_subtype_list reduce_tl_cons_lemma and_wf tl_wf squash_wf true_wf reduce_hd_cons_lemma hd_wf ge_wf length_cons_ge_one subtype_rel_list top_wf inverse-letters_wf inverse-inverse-letters nil_wf length-append nil-append length_of_cons_lemma length_cons length_append iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality because_Cache hypothesisEquality hypothesis setElimination rename productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll unionElimination addLevel applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality unionEquality cumulativity imageElimination independent_functionElimination functionEquality productEquality addEquality universeEquality hyp_replacement promote_hyp inlFormation imageMemberEquality baseClosed inrFormation instantiate equalityUniverse

Latex:
\mforall{}[X:Type]
    \mforall{}x,y,z:(X  +  X)  List.
        (word-rel(X;x;y)
        {}\mRightarrow{}  word-rel(X;x;z)
        {}\mRightarrow{}  ((y  =  z)  \mvee{}  (\mexists{}w:(X  +  X)  List.  (word-rel(X;y;w)  \mwedge{}  word-rel(X;z;w)))))



Date html generated: 2017_10_05-AM-00_44_36
Last ObjectModification: 2017_07_28-AM-09_18_36

Theory : free!groups


Home Index