Nuprl Lemma : inverse-inverse-letters
∀[X:Type]. ∀[a,b,c:X + X].  (a = -b 
⇒ c = -a 
⇒ (c = b ∈ (X + X)))
Proof
Definitions occuring in Statement : 
inverse-letters: a = -b
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
inverse-letters: a = -b
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
isl: isl(x)
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
outr: outr(x)
, 
uimplies: b supposing a
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
assert: ↑b
, 
btrue: tt
, 
true: True
, 
outl: outl(x)
Lemmas referenced : 
btrue_wf, 
bfalse_wf, 
and_wf, 
equal_wf, 
isl_wf, 
btrue_neq_bfalse, 
outr_wf, 
assert_wf, 
bnot_wf, 
outl_wf, 
inverse-letters_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
extract_by_obid, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
isectElimination, 
unionEquality, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
independent_functionElimination, 
voidElimination, 
independent_isectElimination, 
promote_hyp, 
hyp_replacement, 
natural_numberEquality, 
inlEquality, 
inrEquality, 
cumulativity, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[a,b,c:X  +  X].    (a  =  -b  {}\mRightarrow{}  c  =  -a  {}\mRightarrow{}  (c  =  b))
Date html generated:
2017_01_19-PM-02_49_13
Last ObjectModification:
2017_01_14-PM-04_00_28
Theory : free!groups
Home
Index