Nuprl Lemma : inverse-inverse-letters

[X:Type]. ∀[a,b,c:X X].  (a -b  -a  (c b ∈ (X X)))


Proof




Definitions occuring in Statement :  inverse-letters: -b uall: [x:A]. B[x] implies:  Q union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q inverse-letters: -b exists: x:A. B[x] or: P ∨ Q and: P ∧ Q isl: isl(x) prop: not: ¬A false: False outr: outr(x) uimplies: supposing a bnot: ¬bb ifthenelse: if then else fi  bfalse: ff assert: b btrue: tt true: True outl: outl(x)
Lemmas referenced :  btrue_wf bfalse_wf and_wf equal_wf isl_wf btrue_neq_bfalse outr_wf assert_wf bnot_wf outl_wf inverse-letters_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin unionElimination sqequalRule extract_by_obid hypothesis equalityTransitivity equalitySymmetry dependent_set_memberEquality independent_pairFormation isectElimination unionEquality hypothesisEquality applyLambdaEquality setElimination rename independent_functionElimination voidElimination independent_isectElimination promote_hyp hyp_replacement natural_numberEquality inlEquality inrEquality cumulativity lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[a,b,c:X  +  X].    (a  =  -b  {}\mRightarrow{}  c  =  -a  {}\mRightarrow{}  (c  =  b))



Date html generated: 2017_01_19-PM-02_49_13
Last ObjectModification: 2017_01_14-PM-04_00_28

Theory : free!groups


Home Index